江苏意可航空科技股份有限公司新建生产 用房,年产机电产品及配件600万件项目(重新报批)第一阶段竣工环境 保护验收监测报告表

建设单位: 江苏意可航空科技股份有限公司

编制单位: 江苏意可航空科技股份有限公司

建设单位法人代表: (签字)

编制单位法人代表: (签字)

项目负责 人:

填 表 人:

建设单位 (盖章) 编制单位 (盖章)

电话: 13901547253 电话: 13901547253

传真: / 传真: /

邮编: 215143 邮编: 215143

地址: 苏州市相城区黄埭镇太东 地址: 苏州市相城区黄埭镇太东

路北旺庄路东路北旺庄路东

表一

	T							
建设项目名称	江苏意可航空科技股份有限公司新建生产用房,年产机电产品及配件 600万件项目(重新报批)							
建设单位名称	江苏意可航空科技股份有限公司							
建设项目性质	新建(重新报批)							
建设地点	苏州市相城区黄埭镇太东路北旺庄路东							
主要产品名称	机电产品及配件							
设计生产能力		件 600 万件,产品包持 75 万件和高端半导体			、军工部			
实际生产能力		年产机电产品及配件						
建设项目环评时间	2020年06月	开工建设时间		年8月	10 日			
调试时间	2020年10月20日	验收现场监测时间	2021年12月27日-28日、 2022年01月19日~20日、 2022年02月27日~28日、 2022年06月26日~27日					
环评报告表 审批部门	苏州市相城生态环 境局	环评报告表 编制单位	苏州市科嘉环境服务有限公 司					
环保设施设计单位	环保设施施工单位							
投资总概算	40000万	环保投资总概算	1200万	比例	3%			
验收监测依据	40000万 环保投资总概算 1200万 比例 3% 1、《中华人民共和国环境保护法》(2015年1月1日起施行); 2、《中华人民共和国环境影响评价法》,(2018年12月29日第二次修订,2018年12月29日起施行); 3、《建设项目环境保护管理条例》(国务院第658号,2017年10月); 4、关于《建设项目竣工环境保护验收暂行办法》的公告(生态环境部,国环规环评[2017]4号,2017年11月); 5、《国家危险废物名录(2021年版))》(生态环境部令第39号,2020年11月25日修订); 6、《江苏省排污口设置及规范化整治管理办法》(江苏省环境保护局,苏环控[97]122号,1997年9月); 7、《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》江苏省生态环境厅 2021年4月2日; 8、《污染影响类建设项目重大变动清单(试行)》(环办环评函[2020]688号); 9、《苏州市意可机电有限公司新建生产用房,年产机电产品及配件600万件项目(重新报批)建设项目环境影响报告表》(苏州市科嘉环境服务有限公司 2020年6月); 10、《关于对<苏州市意可机电有限公司新建生产用房,年产机电产品及配件600万件项目(重新报批)建设项目环境影响报告表>的批复》(苏州市行政审批局,苏行审环评【2020】70142号,2020年08月06日);							

表一(续)

根据报告表及审批意见要求,本项目执行以下标准:

1、废水

本项目厂区废水总排口执行苏州市相城区黄埭污水处理有限公司接管标准和《污水排入城镇下水道水质标准》(GB/T31962-2015)表 1B级标准,其中总铝、总铜于厂排口执行《电镀污染物排放标准》(GB21900-2008)表 3标准,总镍、六价铬、总铬不得在厂排口检出。本项目含氮、磷、铬、镍生产废水经处理后循环使用,不外排。

表 1-1 废水执行标准

排放口名称	执行标准	污染物名称	标准限值	单位
		рН	6~9	
		COD	300	mg/L
		SS	200	mg/L
	污水厂接管标准	NH ₃ -N	35	mg/L
		TP	4	mg/L
		石油类	2	mg/L
		色度	€30	倍
厂排口	《污水排入城镇下水道水质标	氟化物	20	mg/L
	准》(GB/T31962-2015)表 1B 级	LAS	20	mg/L
	《电镀污染物排放标准》	总铝	2.0	mg/L
	(GB21900-2008) 表 3 标准	总铜	0.3	mg/L
		总镍	不得检出	mg/L
	/	六价铬	不得检出	mg/L
		总铬	不得检出	mg/L

表 1-2 企业回用水水质标准

	执行标准	指标	标准限值	单位
		pН	6.5~8.5	
废气洗		浊度	€5	NTU
涤、水帘 喷漆、淬 火、冷却 塔补充	《城市污水再生利用 工业用水水质》 (GB/T19223-2005)	溶解性总固 体	≤1000	mg/L
		铁	≤0.3	mg/L
		锰	≤0.1	mg/L
用水		氯离子	€250	mg/L
		硫酸盐	€250	mg/L
	《城市污水再生利用	pН	6.5~8.5	
开 安洪	工业用水水质》	浊度	€5	NTU
生产洗 涤用水	(GB/T19223-2005)	色度	€30	度
1 小	表1工艺与产品用水	COD	≤10	mg/L
	指标及企业生产用水	总硬度(以	≪450	mg/L

要求	CaCO3 计)		
	总碱度(以	≤350	mg/L
	CaCO ₃ 计)		
	氨氮(以 N	≤1.0	mg/L
	计)	<1.0	mg/L
	总磷(以P计)	≤0.2	mg/L
	溶解性总固	≤1000	
	体	≪1000	mg/L
	电导率	≤10	μ s/cm

2、废气

本项目颗粒物、非甲烷总烃执行《大气污染物综合排放标准》(GB16297-1996)中表 2 二级标准; 硫酸雾、氮氧化物、氯化氢、氟化物、铬酸雾执行《电镀污染物排放标准》(GB21900-2008)表 5、表 6标准以及江苏省地方标准《大气污染物综合排放标准》(DB32/4041-2021)表 3标准; 碱雾、磷酸雾参照上海市地方标准《大气污染物综合排放标准》(DB31/933-2015)表 1标准; 项目锅炉烟气排放执行《锅炉大气污染物排放标准》(GB13271-2014)中表 3中燃气锅炉污染物排放标准,其中 NOx执行《市政府办公室关于苏州市打赢蓝天保卫战三年行动计划实施方案的通知》(苏府办[2019]67号)中浓度限值。厂区内 VOCs 无组织排放监控点浓度应符合《挥发性有机物无组织排放控制标准》(GB37822-2019)附录 A表 A.1 规定的特别排放限值。具体详见下表 1-3、表 1-4。

表 1-3 大气污染物排放标准限值表

		最高允许排放	最高允许排放 速率		无组织排 控浓度	
污染物	执行标准	浓度 mg/m³	排气 筒高 度 m	速率 kg/h	监控点	浓度 mg/ m³
颗粒物	江苏省地方标准	20	27	1		0.5
非甲烷总烃	《大气污染物综合 排放标准》 (DB32/4041-2021)表1及表3	60	27	3	周界外 浓度最 高点	4.0
*碱雾	上海市地方标准	10	27			
*磷酸雾	《大气污染物综合 排放标准》 (DB31/933-2015) 表 1	5.0	27	0.55		
硫酸雾	《电镀污染物排放	30	27			0.3
氮氧化物	标准》	200	27			0.12
氯化氢	(GB21900-2008)	30	27			0.05
氟化物	表 <i>5</i> 、表 <i>6</i> ,江苏省 地方标准《大气污	7	27			0.02
铬酸雾	染物综合排放标	0.05	27			0.00

基准	排气量	准》 (DB32/4041-2021)表 3 标准	ļ	阳极氧化	工艺: 1	8.6m ³ /m ²	
1	NO _X	苏府办[2019]67 号) 中浓度限值	20				
颗	純物		50	8			
	SO2	《锅炉大气污染物	50				
(林格	气黑度 (曼黑度 , 级)	排放标准》 (GB13271-2014) 中	≤1				
	氧含量 02)/%	表 3	3.5				

注: *待国家污染物监测方法标准发布后实施。

表 1-4 厂区内 VOCs 无组织排放限值

污染物	特别排放限值 (mg/m³)	限值含义	无组织排放监控位置
非甲烷总烃	6	监控点处 1h 平均浓度 值	在厂房外设置监控点
	20	监控点处任意一次浓度 值	在)房外以且血注点

3、噪声

厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

类别	昼间 dB(A)	夜间 dB(A)
3 类	65	55

4、固体废物评价标准:

本项目固体废弃物执行《中华人民共和国固体废物污染环境防治法》和《江苏省固体废物污染环境防治条例》。一般废物贮存执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)。危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2001)及 2013 年修改单(公告 2013 年第 36 号)、省生态环境厅关于进一步加强危险废物污染防治工作的实施意见(苏环办[2019]327 号)、省生态环境厅关于做好江苏省危险废物全生命周期监控系统上线运作工作的通知(苏环办[2020]401 号)相关规定。

5、总量控制指标

本项目执行环评报告表中建议的污染物年排放总量。

控制项目	污染物	接管量(全厂)(t/a)
混合废水(生活废水+生产	废水量	140917
	化学需氧量	30.6382
废水)	悬浮物	14.0912
	氨氮	0.6

总铝 0.1175 总铜 0.0176 石油类 0.7406 LAS 1.1072 氟化物 0.072 颗粒物 0.686 二氧化硫 0.08 氮氧化物 0.714 VOCs(非甲烷总烃) 0.286
石油类0.7406LAS1.1072氟化物0.072颗粒物0.686二氧化硫0.08氮氧化物0.714VOCs(非甲烷总烃)0.286
LAS1.1072氟化物0.072颗粒物0.686二氧化硫0.08氮氧化物0.714VOCs(非甲烷总烃)0.286
氟化物 0.072 颗粒物 0.686 二氧化硫 0.08 氮氧化物 0.714 VOCs(非甲烷总烃) 0.286
颗粒物 0.686 二氧化硫 0.08 氮氧化物 0.714 VOCs(非甲烷总烃) 0.286
二氧化硫 0.08 氮氧化物 0.714 VOCs(非甲烷总烃) 0.286
氮氧化物 0.714VOCs(非甲烷总烃) 0.286
VOCs (非甲烷总烃) 0.286
有组织废气 ————————————————————————————————————
硫酸雾 0.089
氟化物 0.059
氯化氢 0.1
铬酸雾 0.0011
备注 本项目废水、废气均以全厂控制指标核算,本现 组织 VOCs 排放总量以非甲烷总烃计算。

表二

1、工程建设内容:

苏州市意可机电有限公司成立于 2003 年,包括机加事业部、钣金事业部、特种工艺事业部三个主要事业部,主要以生产和加工精密产品部件为主,产品涉足航空航天、军工等领域。公司已建项目机加工车间位于苏州市吴中区临湖镇浦庄中安路,特种工艺车间位于苏州市吴中区郭巷镇塘东路(和协表面处理有限公司厂内 2 号厂房)。因现有厂区分布较分散,管理难度和成本较高,不利于公司持续稳定发展,且现有厂区面积无法满足公司业务增长需要,苏州市意可机电有限公司决定搬迁至苏州市相城区黄埭镇太东路北旺庄路东,新建厂房建设年产机电产品及配件 600 万件项目。该项目已取得苏州相城区发展和改革局备案批复(相发改备[2017]107 号),并于 2018 年 9 月 21 日经原苏州市相城区环境保护局审批(苏相环建[2018]132 号)。目前项目正在厂房建设阶段,现由于管道蒸汽未通,故公司增加 2 台天然气蒸汽锅炉(一用一备),其他建设内容均保持不变,对照苏环办[2015]256 号文件要求,属于重大变化,故重新报批环评。

重新报批项目已于 2017 年 11 月 22 日获得苏州市相城区发展和改革局的备案(相发改备〔2017〕107 号〕文件(见附件 1)。获得备案后建设单位向所在地环境主管部门针对该项目进行了申报,并遵照《中华人民共和国环境保护法》以及国务院 98 第 253 号文《建设项目环境保护管理条例》的有关规定,苏州市意可机电有限公司委托苏州市科嘉环境服务有限公司对其"苏州市意可机电有限公司新建生产用房,年产机电产品及配件 600 万件项目(重新报批)项目"进行环境影响评价。《苏州市意可机电有限公司新建生产用房,年产机电产品及配件 600 万件项目(重新报批)项目建设项目环境影响报告表》于 2020 年 08 月 06 日通过苏州市行政审批局(苏行审环评[2020]70142 号)(见附件 2)审批同意建设,并于 2020年 08 月 10 日开工建设,2020年 10 月 20 日竣工并开始调试。目前项目取得重新报批环评批文后,于 2020年 10 月完成了第一阶段"机加工设备、钣金加工设备、1条普通阳极氧化线、1条铜件清洗钝化线、1条荧光渗透检查线、3条化学氧化线、1条自动喷漆线和1条自动喷粉线,以及相关公辅设施、环保设施等,实际产能为年产机电产品及配件 237.5 万件"的建设并试运行。验收监测期间各类设施运行稳定,具备"三同时"验收监测条件,本项目第一阶段变动情况已完成影响分析并在网上进行公示。

因业务发展需要,苏州市意可机电有限公司于 2022 年 03 月 04 日变更公司名称,公司名称由"苏州市意可机电有限公司"变更为"江苏意可航空科技股份有限公司",现已取得苏州市行政审批局登记通知书(05000214)登字[2022]第 03040017 号(附件 3),以下公司名称全部为江苏意可航空科技股份有限公司。

本项目位于苏州市相城区黄埭镇太东路北旺庄路东,占地面积 27027 平方米,生产经营场 所中心经纬度为: E120.529417°, N31.449915°。本项目厂界周围情况: 东侧紧邻苏州市台群 机械有限公司厂房,南侧为苏州市瑞昌机电工程有限公司,西侧为善角浜路,北侧为空地。本

项目卫生防护距离以生产车间为边界起设置 100m,目前该距离内无居民等环境敏感目标。全 厂员工 500 人, 年工作 300 天, 机加工车间 3 班 24 小时工作制, 特种工艺车间 2 班 16 小时工 作制,年运行7200h。目前厂区内基础设施较为完备,公用工程的道路、供电、供水、通讯、 污水管网、雨水管道等配套条件完善,能满足本项目的需要。

本项目主体工程及产品方案见表 2-2, 主要生产设备见表 2-3。

			表	2-2 项目	目主体工程及产	品方簿	Ĕ				
T	程名称		产品名称		环评中设计			三阶段实		年运行	
	4T-1141				(年产量)		Ì	设(年产量)		时间	
			航空部件		225 万件			155 万件		-	
			铝色	<u> </u>	180 万件		130 万件				
			铜华	‡	25 万件			25 万件			
			不锈钳	羽件	20 万件			0			
			军工部件		75 万件			62.5 万件	=		
			铝化	‡	50 万件			50 万件			
机力	加工车间		不锈钢件		10 万件			2.5 万件		7200h	
		其中	钛合金	注件	5 万件			0			
			铜华	<u></u>	10 万件			10 万件			
		高单	 湍半导体部	3件	300 万件			20 万件		-	
			铝化	<u></u>	250 万件			0			
		其中			30 万件		0		-		
			镀锌板件		20 万件			20 万件			
			铝件		480 万件			180 万件			
			不锈钢件		27.5 万件			0		_	
特利	中工艺车		钢铁件		30 万件			0		4800h	
	间		钛合金件		5 万件			0		- 100011	
					5 万件			5 万件		-	
				2-3 主要		一览表	<u></u>	5 / 4 11			
					<u> </u>	环评		第一阶			
孝	 と 別	设备	设备名称		各(型号)	设计		段实际		备注	
				11	VE2 H	量		建设	\rightarrow \right	<u> </u>	
		三轴加	工中心		VF2、Hass Hass VF6-VF9	50 1	台 38 台			少 12 台 未建设)	
		IIII #s.bb.o.	工中心			10.4		4 />		沙6台	
		四細加	上 中 心		JHX4000	10 1		4 台	(暂	未建设)	
生					ler MC20、				47	љ 14 /	
产	机加	五轴加	工中心		MU65、 40eVo、Hass	26 f	台	12 台		少 14 台 ⁻ 未建设)	
设	エ				JMC750				()	小足以	
备			合车床)5-II、DMG	6 €	÷	6 台		 不变	
		—————	. н т/к		Star SV38R		-	0 🗇			
		粉坊	车床		ST10-ST30、 000EXII-R、	16 1	台	8台		沙 8 台	
		刻江	/N		00EXII-R\	10	J		(暂	未建设)	
					LD4000EAII-K						

			LB4000EXII			
	车铣	5. 复合数控车床	Hass ST20SSY、 Hass ST30SSY、 Hass DS30Y	6台	5 台	减少1台 (暂未建设)
		立式车床	规划中	2 台	0	暂未建设
		数控磨床	规划中	1台	0	暂未建设
		手工铣床	规划中	1 台	0	暂未建设
		时效炉	电加热	1台	0	暂未建设
		数控冲床	AE2510-NT	2 台	1台	减少 1 台 (暂未建设)
	激光切割机		LS3030	2 台	1台	减少 1 台 (暂未建设)
		镂铣机	规划中	2 台	0	暂未建设
	 折弯机		516032	8台	5 台	减少3台 (暂未建设)
		攻丝机	SWJ-16B	2 台	2 台	不变
钣金		压铆机	618plus	1台	1台	不变
加工		油压机	规划中	1台	0	暂未建设
		淬火炉	电加热	1台	1台	不变
	气保焊机		Sigm 400 双脉冲水冷焊机	3 台	3 台	不变
		氩弧焊机	PI350ACDX	3 台	3 台	不变
		碰焊机	/	1台	1台	不变
	拉丝机		/	1台	1台	不变
		时效炉	电加热	1台	1台	不变
	普	通阳极氧化线	/	1条	1条	不变
		整流器	3000A24V	3 个	4 个	增加1个
	其	过滤机	5 吨/小时	8台	14 台	增加6台
	中	龙门式行车 吊挂输送机	吊重 250 公斤	2 个	3 个	增加1个
		吹干箱	电加热	2 个	2 个	不变
	/	化学氧化线	/	3 条	1条	3条合并成1条
		过滤机	5 吨/小时	9台	9台	不变
表面	其中	龙门式行车 吊挂输送机	吊重 250 公斤	6个	3 个	减少3个(取消)
光垤		吹干箱	电加热	6个	2 个	减少4个(取消)
	铜	件清洗钝化线	/	1条	1条	不变
		过滤机	5 吨/小时	3 台	5 台	增加2台
	其中	龙门式行车 吊挂输送机	吊重 250 公斤	2 个	0	取消
		吹干箱	电加热	2 个	2 个	不变
		自动喷漆线	/	1条	1条	不变
	其	静电除尘器	/	1 套	1 套	不变
	中	调漆房	/	1个	2 个	增加1个

	喷漆房	15m2	4 个	2 个	减少2个(取消)
	喷漆台	/	4 个	2 个	减少2个(取消)
	水帘除尘柜	/	4 个	2 个	减少2个(取消)
	喷枪	低压扁嘴式	4 把	4 把	不变
	链条式 O 型 吊挂输送机	吊重 150 公斤	1 个	1 个	不变
	烘道	电加热	2 个	2 个	不变
	自动喷粉线	/	1条	1条	不变
	喷粉房	15m2	1 个	2 个	增加1个
	喷台	/	1 个	2 个	增加1个
其	喷枪	静电喷枪	2 把	2 把	不变
中	链条式 O 型 吊挂输送机	吊重 150 公斤	1个	1 个	不变
	固化炉	电加热	3 台	2 台	减少1台(取消)
	化学清洗线	/	1条	0	暂未建设
	过滤机	5 吨/小时	3 台	0	/
其中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
	吹干箱	电加热	2 个	0	/
染	色阳极氧化线	/	1 条	0	暂未建设
	整流器	3000A24V	2 个	0	/
其	过滤机	5 吨/小时	10 台	0	/
中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
	吹干箱	电加热	2 个	0	/
硬	质阳极氧化线	/	1 条	0	暂未建设
	整流器	100V3000A	1 个	0	/
其	过滤机	5 吨/小时	8台	0	/
中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
	吹干箱	电加热	2 个	0	/
普遍	通不锈钢钝化线	/	1条	0	暂未建设
	过滤机	5 吨/小时	3 台	0	/
其中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
	吹干箱	电加热	2 个	0	/
奥日	长体不锈钢钝化 线	/	1条	0	暂未建设
	过滤机	5 吨/小时	3 台	0	/
其中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
	吹干箱	电加热	2 个	0	/
7	下锈钢酸洗线	/	1条	0	暂未建设

			过滤机	5 吨/小时	4 台	0	/
		其中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
			吹干箱	电加热	2 个	0	/
			电泳线	/	1条	0	暂未建设
			整流器	1000A50V	2 个	0	/
		 其	过滤机	5 吨/小时	8台	0	/
		中	龙门式行车吊 挂输送机	吊重 250 公斤	2 个	0	/
			吹干箱	电加热	2 个	0	/
			喷砂机	/	3 台	0	暂未建设
			抛丸机	/	3 台	0	暂未建设
			热处理炉	真空时效、空气炉	3 台	0	暂未建设
		荧	光渗透检查线	/	1条	1条	不变
		其中	行车吊挂输送 机	吊重 500 公斤	2个	1个	减少 1 个(取 消),行车吊挂 输送机改为电 动葫芦
			吹干箱	电加热	1 个	1个	不变
	检查		烘箱	电加热	1 个	1个	不变
			腐蚀检查线	/	3条	0	暂未建设
			过滤机	5 吨/小时	12 台	0	/
		其中	行车吊挂输送 机	吊重 500 公斤	2 个	0	/
			吹干箱	电加热	2 个	0	/
			磁粉探伤仪	/	1台	0	暂未建设
			空压机	/	1台	1台	/
			纯水机	5t/h	2 套	1 套	1套暂未建设
<i>N</i> F	п и Б		冷冻机	20kw	4 台	3 台	减少 1 台(取 消),实际单台 功率为 30kw
公月	目设备		冷却塔	20t/h	4 台	3 台	1台暂未建设
		燩	汽蒸汽锅炉 1	4t/h	1台	1台	/
		燃	气蒸汽锅炉 2(备 用)	2t/h	1台	1台	/
			软水装置	4t/h	1 套	1 套	/

备注: 主要设备对照表详见附件 3。

3、原辅材料消耗及水平衡:

表 2-4 项目原辅材料一览表

		年	用量	形态、包装方	
名称	规格成分	环评量	第一阶段 实际量	式、规格	储存地点
2024 铝板	主要成分为铝,其余含铜 3.8~4.9%、锰 0.3~1.0%、镁 1.2~1.8%、铬≤0.1%、锌	7t	7t	固态	原料仓库

	≤0.25%			
	主要成分为铝,其余含铜			
	1.2~2.0%、锰≤0.3%、镁			
7075 铝板	2.1~2.9%、铬 0.18~0.28%、	7t	7t	 固态
7073 1日仅	锌 5.1~6.1%、硅≤0.4%、铁	/ι	/ [川心
	≤0.5%、钛≤0.2%、其它杂质			
	≤0.15%			
	主要成分为铝,其余含铜			
	0.15~0.4%、锰≤0.15%、镁			
6061 铝板	0.8~1.2%、铬 0.04~0.35%、	6t	6t	固态
	锌≤0.25%、硅 0.4~0.8%、铁			
	≤0.7%、钛≤0.15%			
2024 铝件	同上	135t	40.5t	固态
7075 铝件	同上	135t	40.5t	固态
6061 铝件	同上	130t	39t	固态
	碳≤0.08%、硅≤1.0%、锰			
304 不锈	≤2.0%、铬 18.0~20.0%、镍	15t	15t	固态
钢板	8.0~11.0%、磷≤0.045%、硫	150	130	西心
	≤0.03%			
216 TH	碳≤0.08%、硅≤1.0%、锰			
316 不锈	≤2.0%、铬 16.0~18.0%、镍	15t	15t	固态
钢板	10.0~14.0%、磷≤0.045%、			
	硫≤0.03%、钼 2.0~3.0%			
钢件	同上	15t	0	固态
钢件	同上	15t	0	固态
	35#	10t	0	固态
钢铁件	45#	3t	0	固态
镀锌板	/	70t	70t	固态
钛合金件	/	3t	0	固态
紫铜件	铜 100%	5t	5t	固态
黄铜件	锌含量≤35%,其余为铜	40t	40t	固态
		600万	237.5 万	
标准件	/	件	件	固态
华 医 恒	主要成分为铁,含少量碳、			田士 101 /
普通钢焊	锰、硅、铬、镍等,不含锡、	0.12t	0.12t	固态、10kg/
<u>44</u>	铅			包
不经知用	主要成分为铁,含少量碳、			田士 101 /
不锈钢焊	锰、硅、铬、镍等,不含锡、	0.24t	0.24t	固态、10kg/
<u>44</u>	铅			包
铝焊丝	主要成分为铝,含少量锌、	0.24t	0.24t	固态、10kg/
切 杆丝	铜等,不含锡、铅	U.24t	U.24l	包
金刚砂	碳化硅	2t	0	固态、25kg/
777.111 HV	HAV	۷۱	U U	袋
石英砂	Al2O3	2t	0	固态、25kg/
нハル	1 11400	-		袋
				·
钢丸	/	2t	0	固态、25kg/
钢丸 拉丝纱带		2t 1500 根	0 1500 根	固态、25kg/ 袋 固态,5kg/根

氩气	/	60kg	60kg	气态,20kg/ 瓶	气体钢瓶 区
液压油	/	0.2t	0.15t	液态,200L/ 桶	
切削液	有机酸 15~20%、防锈剂 10~20%、水 10~15%、表面 活性剂 10~15%、精制矿物 油 20~40%	20t	10t	液态、200kg/ 桶	
脱脂剂	碳酸钠 15%、阴离子表面活性剂 15%、水 70%	12t	8t	液态、200L/ 桶	
氢氧化钠	99%	8t	5t	固态、25kg/ 袋	
盐酸	36%	13t	0	液态、25L/桶	
硫酸	98%	12t	8t	液态、25L/桶	
硝酸	68%	19t	10t	液态、25L/桶	
磷酸	85%	2t	0	液态、25L/桶	
氢氟酸	40%	3t	0	液态、25L/桶	
硼酸	99.8%	1t	1t	固态、25kg/ 袋	
酒石酸	99.5%	1t	1t	固态、25kg/ 袋	
醋酸镍	98.0%	0.2t	0.1t	固态、25kg/ 袋	
铬酸	三氧化铬 99.0%	0.2t	0.2t	固态、25kg/ 袋	化学品仓
重铬酸钾	99%	0.2t	0.2t	固态、25kg/ 袋	库
铬酸钾	99%	10kg	10kg	固态、500g/ 瓶	
Surtec650 化学氧化 剂	Cr3+10%、氟化锆酸钾< 1%、水 89%	2t	2t	液态、25L/桶	
磷化液	含磷酸锰 10%	5t	0	液态、25L/桶	
特氟龙	纳米级,含特氟龙 0.1%, 其余为水	0.1t	0	液态、5L/桶	
染料	蔥醌系酸性染料、糊精、防 菌剂、颜料	2t	0	固态、5 公斤/ 袋	
碳酸钠	99.5%	0.4t	0	固态、25kg/ 袋	
三氯化铁	99%	2t	0	固态、25kg/ 袋	
白色显影 粉	对苯二酚、亚硫酸钠、碳酸 钠、抑制剂	0.05t	0.05t	固态、5kg/袋	
荧光渗透 剂	荧光染料、水	2t	2t	液态、200L/ 桶	
胶体钛	含硫酸钛 0.2%	0.5t	0	液态、25L/桶	
洗枪水	丙酮 99%	0.5t	0.5t	液态、5L/桶	
电泳漆	聚丙酸树脂 56.1%、酸 3%、 颜料 6.5%、去离子水	10t	0	液态、25kg/ 桶	

色粉 15%、丙烯酸共聚物乳液 65%(39%固化成分+26% 水)、表面活性剂 15% (13.5%固化成分+1.5%水)、		29.4%、溶剂 5%			
粉 未 冷 彩 . 2 7t 2 7t 2 7t	水性漆	液 65%(39%固化成分+26%水)、表面活性剂 15%(13.5%固化成分+1.5%水)、醇类溶剂 5%(2%异丙醇	5.5t	5.5t	液态、25L/桶
	粉末涂料		3.2t	3.2t	

备注:	原辅材料使用情况详见附件 4-监测期间环境验收补充材料。	
本	环目用水主要为生活用水量和各类生产用水。根据企业提供的数据资料,	全厂年用水量

共计 52237t, 全部来自自来水管网。核算全厂实际水平衡图见附图 4。

3、工艺流程 3.1 全厂生产工艺流程: 铝板、不锈钢 铜件、钢铁件、钛合金 件、不锈钢件、铝件 板、镀锌板 机加工 钣金加工 铜件 钢铁件 不锈钢件 铝件 钛合金件 不锈钢件 镀锌板件 铝件 (27.5 万件) (35万件) (5 万件) (2.5 万件) (30万件) (430 万件) (50万件) (20万件) 荧光检查线 铜件清洗 钢铁件腐 钛合金件 不锈钢酸 普通不锈钢 奥氏体不锈 (430万件) 洗线 钢钝化线 钝化线 钝化线 蚀检查线 腐蚀检查 改外协加工 30万件 (20万件) (5 万件) (30 万件) 线(5万件) (5万件) (2.5 万件) 喷砂 (430万件) 抛丸 (30万件) 电泳线 普通阳极氧化线 硬质阳极氧化线 化学氧化线 化学清洗线 染色阳极氧化线 (30 万件) (100 万件) (100万件) (100万件) (80万件) (100 万件) 喷漆线 喷粉线 (50万件) (50万件) 标准件 组装 成品检验 → 不合格品 S1-1 包装入库 暂未建设的工艺,下同

第 14 页 共 73 页

图 2-2 全厂生产工艺流程图

工艺流程说明:

铜件经机加工后一部分直接进行人工组装,另一部分进行钝化后再进行人工组装,最后经成品检验合格后包装入库。

钢铁件经机加工后进行腐蚀检查,确认无缺陷后进行抛丸处理,然后进行电泳涂装处理,最后经人工组装、成品检验合格后包装入库。

钛合金件经机加工后进行腐蚀检查,确认无缺陷后进行人工组装,最后经成品检验合格后包 装入库。

不锈钢件经机加工后进行酸洗或钝化,再进行人工组装,最后经成品检验合格后包装入库。

铝件经机加工后进行荧光检查,确认无缺陷后进行喷砂处理,再根据客户的规范要求进行化 学氧化、化学清洗或阳极氧化表面处理(包括普通阳极氧化、染色阳极氧化、硬质阳极氧化), 其中经普通阳极氧化处理后的铝件需进一步进行喷漆或喷粉处理,最后产品经人工组装、成品检 验合格后包装入库。

不锈钢板经钣金加工后直接进行人工组装,最后经成品检验合格后包装入库。

铝板经钣金加工后进行普通阳极氧化表面处理,然后进一步进行喷漆或喷粉处理,最后产品 经人工组装、成品检验合格后包装入库。

镀锌板经钣金加工后直接进行人工组装,最后经成品检验合格后包装入库。

3.2 机加工生产工艺流程:

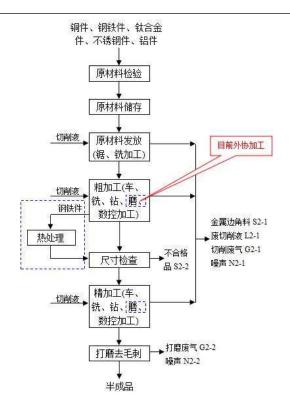


图 2-3 机加工生产工艺流程图

备注: 热处理, 暂未建设, 打磨目前委外加工 (附委外加工协议)

工艺流程说明:

机加工生产的主要是铝件、铜件、不锈钢件、钢铁件和钛合金件半成品。

(1) 原材料检验

原材料由质量部负责检验,确保未经检验或者不合格的原材料不入库,不投入生产,不合格原材料直接退回供应商。

(2) 原材料储存

仓库管理员按照类别,分区域、分库位储存原材料。

(3) 原材料发放

仓库物料员按照工单上指定发放原材料,对需要下料的原材料进行锯床或铣床机加工切割,分割成指定的尺寸,便于后面的加工;锯床和铣床使用水基切削液进行降温和润滑,切削液与水以 1:9 配比,产生的金属屑被带入切削液,通过设备自带的循环池过滤后切削液循环使用,一年更换一次。

(4) 粗加工

根据工单上工序指定工位,在车床、铣床、钻床、磨床、数控加工中心等设备上,用刀具对材料进行切割,改变工件的形状、尺寸、位置等,使其成为半成品。

(5) 热处理

本项目采用真空热处理炉对钢铁件进行热处理(热处理仅针对钢铁件,其它材质的工件不需

要进行热处理)。真空淬火的原理是在真空状态下把工件电加热到淬火温度(大约 100℃)并保持一段时间(约 3 小时),再向冷却室中通入高纯度中性气体(氮气)进行冷却。该热处理方法具有变形小、高效、节能、无污染的特点。

(6) 尺寸检查

质量部门对产品进行尺寸检验,判断产品是否符合工序要求,符合的进入下步工序,不合格的产品由研发部工程师进行确认,能返工的走返工流程,不能返工需要报废的,走报废流程,报废率约0.5%,经收集后外售。

(7) 精加工

与粗加工使用的设备相近,精加工过程中加工余量比较小,目的是使产品尺寸符合图纸要求。

(8) 打磨去毛刺

机加工后产品部分区域会产生飞边、毛刺,采用刮刀、砂轮、金刚笔等打磨工具清除掉产品 上的锐边、毛刺,打磨在专门的密闭打磨房进行。

工件经打磨去毛刺后即为铝件、铜件、不锈钢件、钢铁件和钛合金件半成品,其中铜件进入下道组装工序,钢铁件、钛合金件进入下道腐蚀检查工序,铝件进入下道荧光检查工序,不锈钢件进入下道酸洗工序。

3.3 钣金加工工艺流程:

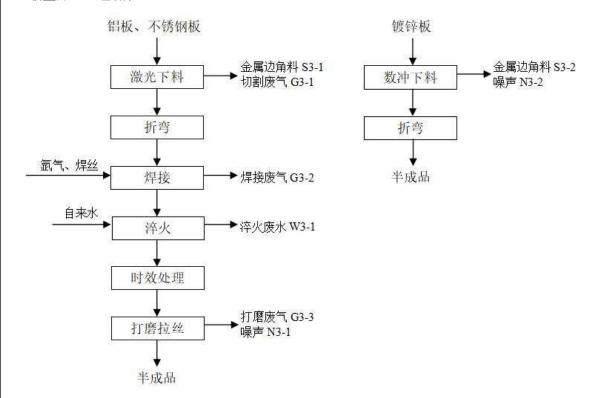


图 2-4 钣金加工工艺流程图

工艺流程说明:

钣金加工生产的主要是航空铝件、不锈钢件和镀锌板件半成品。

(1) 激光下料

利用激光发生器产生的激光光束,用高热量激光束熔化铝板或不锈钢板,将铝板或不锈钢板割穿,形成零件平面形状,激光切割机自带除尘装置,可将切割过程中产生的大部分粉尘去除,少部分以无组织形式排放。

(2) 数冲下料

利用数控程序控制零件在数控冲床上的加工路线,配合数冲模具冲裁取得一定外形的镀锌板件。

(3) 折弯

将半成品放置于模具中,通过液压油缸控制折弯机的运行,使其成型出一定的角度。

(4) 焊接

本项目焊接方式采用气体保护焊(CO2气体保护焊、氩弧焊),通过交、直流电引弧,利用电弧的高热量熔化铝板或钢板及焊丝,使不同的铝板或钢板相互融合成一块整体,焊接过程中利用氩气保护熔池,使材料不被氧化。

(5) 淬火

本项目以水作为淬火剂进行淬火(淬火仅针对航空铝件,不锈钢件不需要进行淬火),通过 电加热使金属工件达到一定的温度(大约 430℃)并保持一段时间,然后放入水中使其迅速冷却 至室温,以改变金属内部的金相组织结构。

(6) 时效处理

铝件经过淬火后材料硬度增加,易变脆,需要将材料电加热到一定温度(大约 260°C)并保持一段时间,然后在空气中自然冷却至室温。

(7) 打磨拉丝

用拉丝纱带取出表面氧化皮和熔渣,在表面形成一定纹理,打磨在专门的密闭打磨房进行。 工件经打磨拉丝后即为铝件、不锈钢件和镀锌板件半成品,其中铝件进入下道表面处理工序, 不锈钢件和镀锌板件直接进入下道组装工序。

3.4 检查工艺流程:

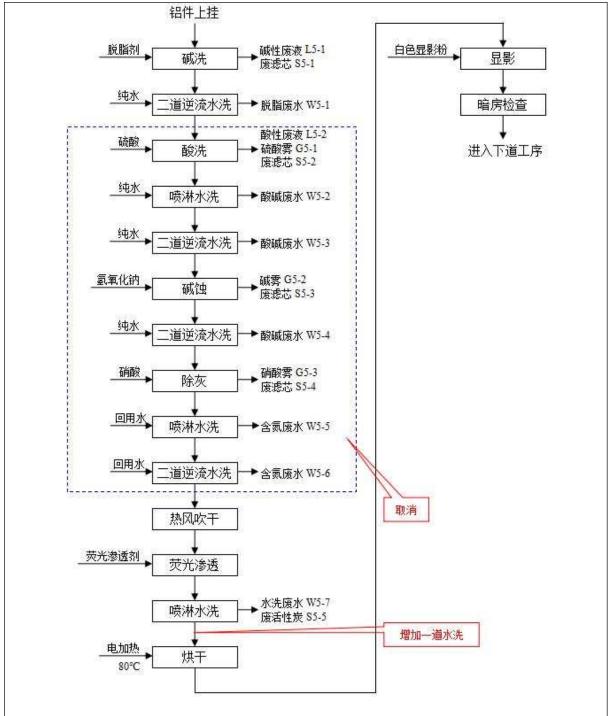


图 2-5 荧光检查渗透工艺流程图

工艺流程说明:

本项目设置 1 条荧光检查线,主要对机加工后的铝件半成品进行荧光渗透检查,其目的是检查铝件表面缺陷,如夹渣、折叠、裂纹等材料缺陷,保证工件的质量。项目加工铝件共 480 万件,其中 430 万件需要进行荧光渗透检查,工件输送方式为行车吊挂输送。

(1) 碱洗

本项目采用碱性脱脂剂进行碱洗除油,碱洗槽设置在线过滤装置,对槽液进行回收再利用,

定期补充损失的槽液,每半年更换一次滤芯,每3年更换一次槽液。槽液采用蒸汽间接加热。碱洗后进行二道逆流水洗。

[注:本项目水洗方式主要有两种:一是逆流漂洗,废水由前端的清洗槽连续排放,每条线水洗槽逆流量为 0.3m3/h (其中酸洗后水洗、除灰后水洗逆流量为 0.15m³/h),常温进行,水洗时间约 30S;二是喷淋水洗,常温进行,水洗时间约 30S,此工序水洗槽每 3 个月整槽排放一次,平时只需添加。喷淋水洗的作用是通过雾状水的喷洗实现用少量的水冲洗工件上的药液,以减轻后续水洗的工作量,冲洗下来的药液则通过在线过滤装置过滤后回收再利用。

(2) 酸洗

本项目采用硫酸进行酸洗除锈,酸洗槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每3年更换一次槽液。槽液采用蒸汽间接加热。

酸洗后先进行喷淋水洗,再进行二道逆流水洗。

(3) 碱蚀

本项目采用氢氧化钠溶液作为碱蚀液,碱蚀的作用是去除工件表面的氧化皮,通过测试片的腐蚀量控制实际产品的腐蚀时间,一般控制单边腐蚀 2~5 μ m。碱蚀槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

碱蚀后进行二道逆流水洗。

(4) 除灰

本项目采用化学除灰,即将工件浸入盛有硝酸的槽液中进行出光处理,除灰的作用是去除工件表面的浮灰,通过测试片的腐蚀量控制实际产品的腐蚀时间,一般控制单边腐蚀 2~5 μ m。除灰槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

除灰后先进行喷淋水洗,再进行二道逆流水洗,最后通过热空气吹干箱将工件吹干,吹干箱 采用电加热,加热温度约 90℃。

(5) 荧光渗透

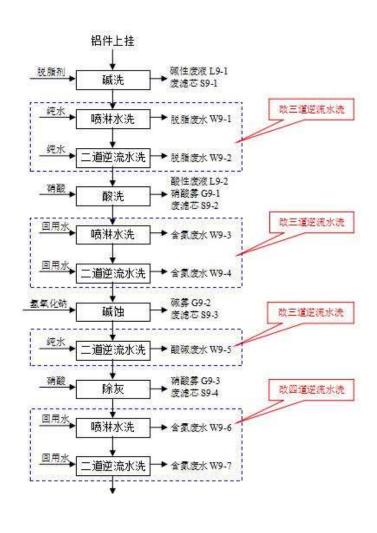
将工件浸入盛有荧光渗透剂的槽液中,在毛细作用下,由于液体的润湿与毛细管作用使渗透剂渗入工件表面开口缺陷中去,然后通过喷淋水洗去除掉工件表面多余的渗透剂,将缺陷中的渗透剂保留下来,再通过烘箱烘干,烘箱采用电加热,加热温度约80℃。

荧光渗透后采用纯水进行喷淋水洗,喷淋废水经活性炭过滤吸附后循环使用,每3个月整槽排放一次废水,每半年更换一次活性炭。

(6) 显影

在工件表面涂上一层均匀的白色显影粉,缺陷中的渗透剂在毛细作用下重新被吸附到工件表面上来而形成放大了的缺陷图像显示。

(7) 暗房检查


在暗处用紫外灯照射工件表面,缺陷处发出明亮的荧光,从而观察缺陷显示,无缺陷的即进入下道喷砂工序,有缺陷的进行返工。

荧光检查工艺主要控制参数见表 5-1。

表 5-1 荧光检查工艺主要控制参数

工段	槽液主要成分	槽液浓度	工艺温度	工艺时间(S)
碱洗	脱脂剂	50g/L	80~90	600
酸洗	硫酸	180g/L	20~40	120
碱蚀	氢氧化钠	50g/L	40~50	300
除灰	硝酸	300g/L	20~40	30
荧光渗透	荧光渗透剂	180g/L	室温	

3.5 普通阳极氧化工艺流程:

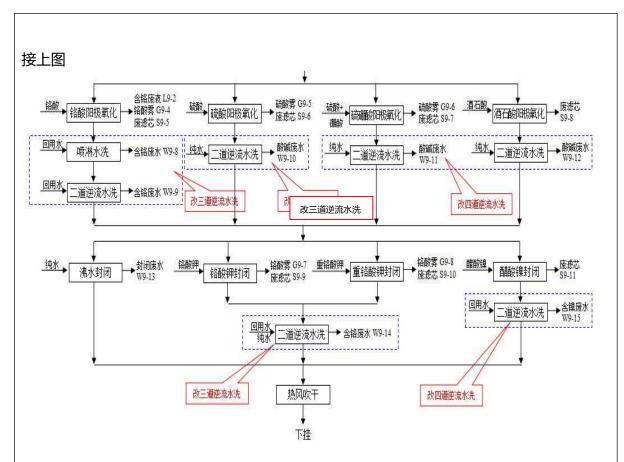


图 2-6 普通阳极氧化工艺流程图工艺流程图

本项目设置 1 条普通阳极氧化线,主要对喷砂和钣金加工后的铝件半成品进行普通阳极氧化处理。工件输送方式为龙门式行车吊挂输送。

(1) 碱洗

铝件在进行表面处理之前,必须先除去表面的油污,才能保证转化膜与基体金属的结合强度,保证转化膜化学反应的顺利进行,获得质量合格的转化膜层。本项目采用碱性脱脂剂进行碱洗除油,此类脱脂剂渗透力强、乳化力强,能细粒化油脂及污垢,并使之脱离金属表面,且此剂属中碱性,对金属无腐蚀,易用冷水清洗,适用于本项目铝件的碱洗除油。碱洗槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每3年更换一次槽液。槽液采用蒸汽间接加热。

碱洗后先进行喷淋水洗,再进行三道逆流水洗。

(2) 酸洗

将铝件浸入硝酸水溶液中,以除去金属表面的氧化皮和锈蚀物。酸洗槽设置在线过滤装置, 对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每3年更换一次槽液。槽 液采用蒸汽间接加热。

酸洗后先进行喷淋水洗,再进行三道逆流水洗。

(3) 碱蚀

利用碱性溶液能对金属表面产生强有力的腐蚀作用以去掉金属表面的钝化层、锈迹或其它夹

杂物以获得一个更加清洁的表面,通过测试片的腐蚀量控制实际产品的腐蚀时间,一般控制单边腐蚀 2~5 μm。本项目采用氢氧化钠溶液作为碱蚀液,铝材放入氢氧化钠溶液中有两个腐蚀过程,即对铝材表面自然氧化膜的溶解和对铝基体的腐蚀溶解过程,其反应如下:

Al2O3+2NaOH→2NaAlO2+H2O

2Al+2NaOH+2H2O→2NaAlO2+3H2↑

随着溶液中铝离子浓度的增高,偏铝酸钠会水解生成氢氧化铝沉淀,反应式如下:

2NaAlO2+4H2O→2Al(OH)3 ↓ +2NaOH

碱蚀槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次 滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

碱蚀后进行三道逆流水洗。

(4) 除灰

铝件在经过了碱蚀水洗后采用硝酸水溶液进行除灰处理,去除铝件表面的灰状物,也称为中和或者出光,通过测试片的腐蚀量控制实际产品的腐蚀时间,一般控制单边腐蚀 2~5 μ m。除灰的功能是去除残留在铝件表面的的各种金属间化合物颗粒形成的表面层,其更重要的功能是使铝材表面获得清洁光亮的钝化表面,在水洗中不易发生雪花状腐蚀等缺陷。除灰工艺有机械除灰、化学除灰、电化学除灰三种。本项目采用化学除灰,即将铝件浸入盛有硝酸的槽体中进行出光处理,主要化学反应方程式如下:

NaOH+HNO3→NaNO3+H2O

 $Al+4HNO3 \rightarrow Al(NO3)3+2H2O+NO$

Al2O3+6HNO3→2Al(NO3)3+3H2O

除灰槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次 滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

除灰后先进行喷淋水洗,再进行四道逆流水洗。

(5) 阳极氧化

将前处理后的铝件放入氧化槽内进行表面氧化,铝件作为阳极全部浸入电解液中,在外加电流的作用下使表面形成一层稳定、致密的氧化膜,提高其耐蚀性及装饰性。氧化膜生成时产生大量的热量,导致生产过程中槽液温度过高,温度过高使得膜溶解加快,品质不好,不同的氧化工艺控制的温度不同,一般不超过70℃,为了防止局部过热需要进行强制冷却或搅拌电解液。本项目普通阳极氧化所采用的阳极氧化方法主要有铬酸阳极氧化法、硫酸阳极氧化法、硫硼酸阳极氧化法和酒石酸阳极氧化法,具体采用哪一种阳极氧化方法需根据客户要求确定。

阳极氧化机理:

成膜过程: Al-3e→Al3+

H2O→2H++O2-

2Al3++3O2-→Al2O3

膜溶解过程: Al2O3+6H+→2Al3++3H2O

阴极上发生水的分解反应析出氢气: 2H++2e→H2↑

另外,铝阳极氧化膜的绝缘性使得氧化膜的成膜及膜溶解过程是相互关联的,氧化膜的局部溶解使得成膜反应能持续,最终形成多孔的蜂窝状阳极氧化膜。氧化槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,铬酸阳极氧化槽每2年更换一次槽液,其它阳极氧化槽槽液不需要更换。槽液采用蒸汽间接加热。

阳极氧化完成后,将铝件从电解液中取出进行清洗(铬酸阳极氧化后先进行喷淋水洗,再进行三道逆流水洗、硫酸阳极氧化后,直接进行三道逆流水洗;其它阳极氧化完成后,直接进行四道逆流水洗),把所沾的酸液用清水冲洗掉,保证酸液清洗干净,避免铝件表面出现白斑。

(6) 封闭

将铝件进行阳极氧化将会得到一层非常多孔的阳极氧化膜,封闭的目的就是将这些刚形成的氧化膜表面由化学活性状态转变为化学惰性状态,从而改变表面的特性状态,使其大大降低吸附腐蚀介质的能力。本项目所采用的封闭方法主要有沸水封闭法、铬酸钾封闭法、重铬酸钾封闭法和醋酸镍封闭法,具体采用哪一种封孔方法需根据客户要求确定,不同的阳极氧化方法与不同的封孔方法之间并无对应关系。

①沸水封闭

沸水封闭技术是在沸纯水中,通过氧化铝的水合反应,将非晶态氧化铝转化成称为勃姆体的水合氧化铝,即 Al2O3•H2O(AlOOH)。由于水合氧化铝比原阳极氧化膜的分子体积大了 30%,体积膨胀使得阳极氧化膜的微孔填充封闭。沸水封闭的本质是水合反应,其反应方程式为:

3Al2O3+3H2O→2AL2O3•H2O(AlOOH)

纯水采用蒸汽间接加热, 沸水封闭后不需要水洗。

②重铬酸钾封闭

当经过阳极氧化的铝件进入溶液时,氧化膜和孔壁的氧化铝与水溶液中的重铬酸钾发生下列 化学反应:

2Al2O3+3K2Cr2O7+5H2O→2Al(OH)CrO4+2Al(OH)Cr2O7+6KOH

生成的碱式铬酸铝及碱式重铬酸铝和热水分子与氧化铝生成的一水合氧化铝及三水合氧化铝一起封闭了氧化膜的微孔。

重铬酸钾封闭槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每年更换一次滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

重铬酸钾封闭后进行三道逆流水洗。

③醋酸镍封闭

易水解的镍盐被氧化膜吸附后,在阳极氧化膜微细孔内发生水解,生成的氢氧化镍沉积在氧化膜微孔中,将孔封闭。在封闭处理过程中,发生如下反应:

Ni2++2H2O=Ni(OH)2+2H+

醋酸镍封闭槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

醋酸镍封闭后进行四道逆流水洗。

(7) 热风吹干

利用热空气吹干箱将工件吹干,吹干箱采用电加热,加热温度约120℃。

工件经吹干后即下挂进入下道喷漆或喷粉工序。

普通阳极氧化工艺主要控制参数见表 5-5。

表 5-5 普通阳极氧化工艺主要控制参数

工段	槽液主要成分	槽液浓度	工艺温度(℃)	工艺时间(S)
碱洗	脱脂剂	50g/L	80~90	600
酸洗	硝酸	300g/L	20~40	300
	氢氧化钠	50g/L	40~50	300
除灰	硝酸	300g/L	20~40	30
铬酸阳极氧化	铬酸	30~50g/L	35~45	根据膜厚
硫酸阳极氧化	硫酸	180g/L	15~25	根据膜厚
硫硼酸阳极氧化	硫酸+硼酸	180g/L	10~70	根据膜厚
酒石酸阳极氧化	酒石酸	180g/L	10~70	根据膜厚
沸水封闭	纯水		>98	1000
各酸钾封闭	铬酸钾	50mg/L	83~85	600
重铬酸钾封闭	重铬酸钾	50g/L	>95	1500
醋酸镍封闭	醋酸镍	8~12g/L	>98	1000

3.5 普通阳极氧化工艺流程:

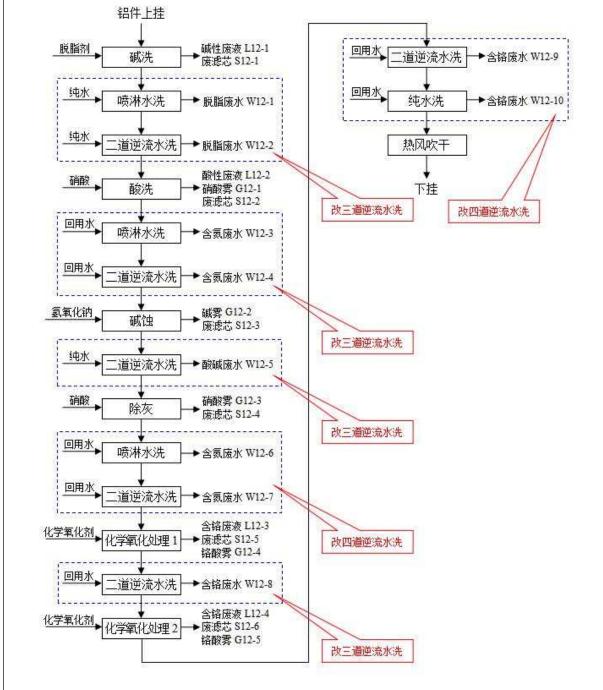


图 2-7 化学氧化工艺流程图

工艺流程说明:

本项目设置 3 条化学氧化线,主要对喷砂后的 2024、7075、6061 铝件半成品进行化学氧化处理。工件输送方式为龙门式行车吊挂输送。

(1) 碱洗

铝件在进行表面处理之前,必须先除去表面的油污,才能保证转化膜与基体金属的结合强度,保证转化膜化学反应的顺利进行,获得质量合格的转化膜层。本项目采用碱性脱脂剂进行碱洗除油,此类脱脂剂渗透力强、乳化力强,能细粒化油脂及污垢,并使之脱离金属表面,且此剂属中碱性,对金属无腐蚀,易用冷水清洗,适用于本项目铝件的碱洗除油。碱洗槽设置在线过滤装置,

对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每1年更换一次槽液。槽液采用蒸汽间接加热。

碱洗后先进行喷淋水洗,再进行三道逆流水洗。

(2) 酸洗

将铝件浸入硝酸水溶液中,以除去金属表面的氧化皮和锈蚀物。酸洗槽设置在线过滤装置, 对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每3年更换一次槽液。槽 液采用蒸汽间接加热。

酸洗后先进行喷淋水洗,再进行三道逆流水洗。

(3) 碱蚀

利用碱性溶液能对金属表面产生强有力的腐蚀作用以去掉金属表面的钝化层、锈迹或其它夹杂物以获得一个更加清洁的表面,通过测试片的腐蚀量控制实际产品的腐蚀时间,一般控制单边腐蚀 2~5 μm。本项目采用氢氧化钠溶液作为碱蚀液,铝材放入氢氧化钠溶液中有两个腐蚀过程,即对铝材表面自然氧化膜的溶解和对铝基体的腐蚀溶解过程,其反应如下:

Al2O3+2NaOH→2NaAlO2+H2O

2Al+2NaOH+2H2O→2NaAlO2+3H2↑

随着溶液中铝离子浓度的增高,偏铝酸钠会水解生成氢氧化铝沉淀,反应式如下:

2NaAlO2+4H2O→2Al(OH)3 ↓ +2NaOH

碱蚀槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

碱蚀后进行三道逆流水洗。

(4) 除灰

铝件在经过了碱蚀水洗后采用硝酸水溶液进行除灰处理,去除铝件表面的灰状物,也称为中和或者出光,通过测试片的腐蚀量控制实际产品的腐蚀时间,一般控制单边腐蚀 2~5 μ m。除灰的功能是去除残留在铝件表面的的各种金属间化合物颗粒形成的表面层,其更重要的功能是使铝材表面获得清洁光亮的钝化表面,在水洗中不易发生雪花状腐蚀等缺陷。除灰工艺有机械除灰、化学除灰、电化学除灰三种。本项目采用化学除灰,即将铝件浸入盛有硝酸的槽体中进行出光处理,主要化学反应方程式如下:

NaOH+HNO3→NaNO3+H2O

Al+4HNO3→Al(NO3)3+2H2O+NO

Al2O3+6HNO3→2Al(NO3)3+3H2O

除灰槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次 滤芯,槽液不需要更换。槽液采用蒸汽间接加热。

除灰后先进行喷淋水洗,再进行四道逆流水洗。

(5) 化学氧化

铝件与化学氧化剂(三价铬盐)接触,通过化学或电化学反应,在表面形成难溶于水的铬酸盐膜层。化学氧化处理槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每3年更换一次槽液。槽液采用蒸汽间接加热。

化学氧化处理后先进行三道逆流水洗,再进行纯水洗。

(6) 热风吹干

利用热空气吹干箱将工件吹干,吹干箱采用电加热,加热温度约90℃。

工件经吹干后即下挂进入下道组装工序。

化学氧化工艺主要控制参数见表 5-8。

表 5-8 化学氧化工艺主要控制参数

工段	槽液主要成分	槽液浓度	工艺温度(℃)	工艺时间(S)
碱洗	脱脂剂	50g/L	80~90	600
酸洗	硝酸	300g/L	20~40	300
碱蚀	氢氧化钠	50g/L	40~50	300
除灰	硝酸	300g/L	20~40	30
化学氧化	化学氧化剂	10g/L	15~35	300

3.5 铜件清洗钝化工艺流程:

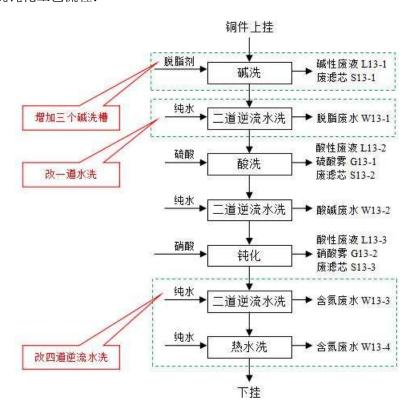


图 2-8 铜件清洗钝化工艺流程图

工艺流程说明:

本项目设置 1 条铜件清洗钝化线,主要对机加工后的部分铜件半成品(紫铜件,5t/a)进行钝化处理。工件输送方式为龙门式行车吊挂输送。

(1) 碱洗

本项目采用碱性脱脂剂进行碱洗除油,碱洗槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每1个月更换一次槽液。槽液采用蒸汽间接加热。碱洗后进行一道逆流水洗。

(2) 酸洗

采用硫酸进行酸洗除锈,酸洗槽设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每1年更换一次槽液。

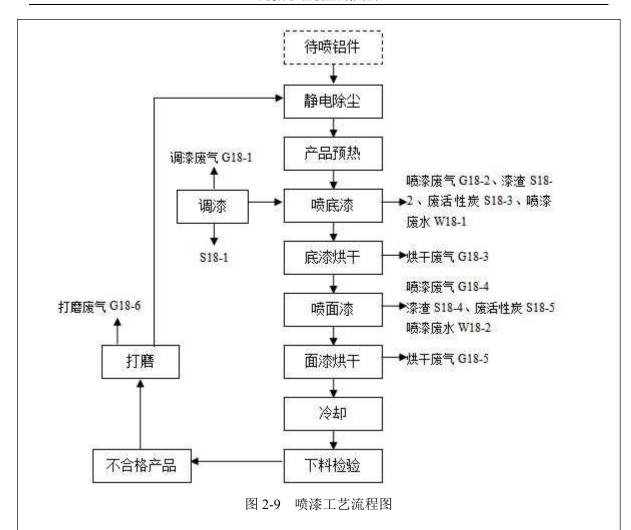
酸洗后进行二道逆流水洗。

(3) 钝化

钝化原理: 钝化是由于金属与氧化性物质作用,作用时在金属表面生成一种非常薄的、致密的、覆盖性能良好的、牢固地吸附在金属表面上的钝化膜。这层膜成独立相存在,通常是氧化金属的化合物。它起着把金属与腐蚀介质完全隔开的作用,防止金属与腐蚀介质接触,从而使金属基本停止溶解形成钝态达到防腐蚀的作用。

采用硝酸作为钝化液,并设置在线过滤装置,对槽液进行回收再利用,定期补充损失的槽液,每半年更换一次滤芯,每1年更换一次槽液。

钝化后进行四道逆流水洗,再采用热纯水进行清洗(采用蒸汽间接加热至 40~50℃,水洗时间约 180S)。


工件经吹干后即下挂进入下道组装工序。

铜件清洗钝化工艺主要控制参数见表 5-9。

表 5-9 铜件清洗钝化工艺主要控制参数

工段	槽液主要成分	槽液浓度	工艺温度(℃)	工艺时间(S)
碱洗	脱脂剂	50g/L	80~90	600
酸洗	硫酸	15%	室温	1800
钝化	硝酸	10%	室温	1800

3.5 喷漆工艺流程:

工艺流程说明:

本项目设置 1 条自动喷漆线,主要对普通阳极氧化后的铝件半成品进行喷漆处理。工件输送方式为链条式 O 型吊挂输送。

(1) 静电除尘

经过普通阳极氧化处理的工件通过静电除尘装置将表面的剩余小颗粒去除。该工序产生的粉尘量极少,可忽略不计,本环评不作具体考核。

(2) 产品预热

在自动流水线上设电加热预热炉对产品进行预热,若低于 25 \mathbb{C} ,则预热至 25 \mathbb{C} ,若高于 25 \mathbb{C} 无需预热,预热时间 1~1.5min。

(3) 调漆

本项目设置1间调漆房,室内全封闭微负压,采用人工调漆方式,设1个调漆桶和1个调漆搅拌器,按水性漆:纯水=2:1混合调底漆,水性漆:纯水=1:1混合调面漆,油漆在调漆房调配后经过供漆系统供应至喷漆房。

(4) 喷底漆

本项目使用水帘式喷漆房,喷漆房一侧开门用于工件的进出,工作时大门关闭,室内采用送、

排风系统保证微负压状态。采用自动喷漆线进行喷漆,待喷工件固定在挂钩上,喷涂采用低压高雾化喷枪,上漆率约70%,30%的未涂着涂料形成逸散漆雾,在风机形成的气流带动下被漆雾处理区的瀑布状水帘吸附,其中固体树脂颗粒在负压的引导下流向水帘板下的水槽,水槽内设置漆渣过滤结构,定期清理,水槽内的水经活性炭过滤吸附后循环使用,每2个月整槽排放一次,每半年更换一次活性炭。

(5) 底漆烘干

本项目烘干工序包括流平、固化两个阶段,采用自动烘干线进行漆膜固化;工件喷漆后通过自动传输线传输到自动烘干线中,在清洁的、有一定空气流速的遂道内运行 10~15 分钟,将湿漆工件表面的溶剂挥发一部分,同时湿漆膜也得以流平,从而保证了漆膜的平整度和光泽度,防止在烘干时漆膜上出现针孔等油漆质量问题;流平后进入固化阶段,固化烘烤温度维持在 60℃左右,工件停留时间约为 5min,烘干后的产品自然冷却。烘干线使用电加热。

(6) 喷面漆

本项目使用水帘式喷漆房,喷漆房一侧开门用于工件的进出,工作时大门关闭,室内采用送、排风系统保证微负压状态。采用自动喷漆线进行喷漆,待喷工件固定在挂钩上,喷涂采用低压高雾化喷枪,上漆率约70%,30%的未涂着涂料形成逸散漆雾,在风机形成的气流带动下被漆雾处理区的瀑布状水帘吸附,其中固体树脂颗粒在负压的引导下流向水帘板下的水槽,水槽内设置漆渣过滤结构,定期清理,水槽内的水经活性炭过滤吸附后循环使用,每2个月整槽排放一次,每半年更换一次活性炭。

(7) 面漆烘干

本项目烘干工序包括流平、固化两个阶段,采用自动烘干线进行漆膜固化;工件喷漆后通过自动传输线传输到自动烘干线中,在清洁的、有一定空气流速的遂道内运行 10~15 分钟,将湿漆工件表面的溶剂挥发一部分,同时湿漆膜也得以流平,从而保证了漆膜的平整度和光泽度,防止在烘干时漆膜上出现针孔等油漆质量问题;流平后进入固化阶段,固化烘烤温度维持在 60℃左右,工件停留时间约为 5min,烘干后的产品自然冷却。烘干线使用电加热。

(8) 下料检验

对产品进行检验,合格产品进入下道组装工序,不合格产品经打磨后重新喷涂。本项目喷漆 产品不合格率约 0.5%。

(9) 打磨

打磨过程在喷漆房内进行,对不合格产品人工用海绵砂纸进行打磨。

喷枪及挂具清洗:喷枪及挂具反复使用一定时间后,其表面有反复干化的油漆,需定期清洗。本项目使用丙酮浸泡清洗,喷枪每天清洗一次,每次清洗时间约 5min;挂具一个月清洗一次。清洗工序在喷漆房内进行,挥发的有机废气 G14-7 进入喷漆房废气收集系统,减少挥发的有机废气外溢,清洗废液 L14-1 委托有资质单位处理。

3.6 喷粉工艺流程:

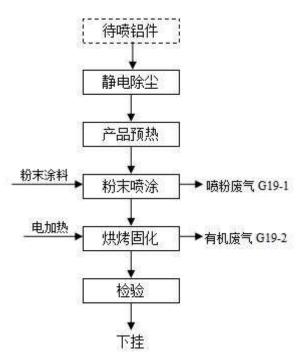


图 2-10 喷漆工艺流程图

工艺流程说明:

本项目设置1条自动喷粉线,主要对普通阳极氧化后的铝件半成品进行喷粉处理。工件输送方式为链条式 O 型吊挂输送。

(1)静电除尘

经过普通阳极氧化处理的工件通过静电除尘装置将表面的剩余小颗粒去除。该工序产生的粉尘量极少,可忽略不计,本环评不作具体考核。

(2) 产品预热

在自动流水线上设电加热预热炉对产品进行预热,若低于 25 ℃,则预热至 25 ℃,若高于 25 ℃ 无需预热,预热时间 $1\sim1.5$ min。

(3) 粉末喷涂

采用全封闭自动化静电喷粉工艺。将待喷工件固定在挂钩上,塑粉在压缩空气的作用下通过喷枪射在工件表面,喷枪喷射的同时挂钩转动,以保证塑粉均匀附着在工件表面,喷涂完毕后进入固化炉烘烤工件。粉末涂着效率在70%左右,没有上到工件的部分被抽吸到粉末回收装置中,经滤芯过滤后回收到供粉桶中循环使用,未被回收的粉末排放进入大气。

(4) 烘烤固化

将工件移入密闭式固化炉,通过电加热对固化炉进行加温,固化炉温度通常在 200℃左右,持续时间为 30min。工件表面的塑粉在高温下溶解、流平,牢固的粘附在工件表面。固化结束后工件自然冷却。

(5) 检验

产品不合格率约 0.5%。 4、项目变动情况 项目具体变动情况详见《苏州市意可机电有限公司新建生产用房,年产机电产品及配件 600 万件项目第一阶段验收变动环境影响分析》,对照《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》、《污染影响类建设项目重大变动清单(试行)》(环办环评函[2020]688 号),不属于重大变动。
项目具体变动情况详见《苏州市意可机电有限公司新建生产用房,年产机电产品及配件 600 万件项目第一阶段验收变动环境影响分析》,对照《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》、《污染影响类建设项目重大变动清单(试行)》(环办环评函[2020]688
万件项目第一阶段验收变动环境影响分析》,对照《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》、《污染影响类建设项目重大变动清单(试行)》(环办环评函[2020]688
污许可管理衔接的通知》、《污染影响类建设项目重大变动清单(试行)》(环办环评函[2020]688
号),不属于重大变动。

表三

主要污染源、污染物处理和排放:

1、废水

本项目第一阶段实际建成部分产生废水涉及含氮磷废水、含铬废水、含镍废水、脱脂除油废水、涂装废水和综合废水(包括淬火废水、酸碱废水、封闭废水、渗透后水洗废水和除尘废水),废水分类收集、分别处理。

含氮磷废水单独收集后进入含氮磷废水处理设施("反应沉淀+超滤+RO+三效蒸发"工艺)处理,RO出水及蒸发冷凝水回用于生产中含氮磷工序;含铬废水单独收集后进入含铬废水处理设施("还原沉淀+砂滤+单效蒸发"工艺)处理,蒸发冷凝水回用于生产中含铬工序;含镍废水单独收集后进入含镍废水处理设施("反应沉淀+砂滤+树脂过滤+单效蒸发"工艺)处理,蒸发冷凝水回用于生产中含镍工序;脱脂除油废水单独收集经隔油池预处理后进综合废水处理设施进一步处理;涂装废水单独收集经芬顿氧化池预处理后进综合废水处理设施进一步处理;预处理后的脱脂除油废水、涂装废水混合其它综合废水(包括淬火废水、酸碱废水、封闭废水、渗透后水洗废水和除尘废水)、生活污水一起进综合废水处理设施处理达接管标准后排入市政污水管网,接入苏州市相润排水管理有限公司(黄埭污水处理厂)集中处理。项目纯水制备浓水部分回用,其余与冷却塔排水、锅炉房排水一起进综合废水处理设施处理达接管标准后排入市政污水管网,接入苏州市相润排水管理有限公司(黄埭污水处理厂)集中处理。

本项目水污染物产生及排放情况见表 3-1。废水处理工艺流程见图 3-2、废水处理站现场照片见图 3-3。

类 别	来源	污染物种类	排放规律	排放量 (t/a)	处理设施	设计处理 能力(t/d)	设计指标 (mg/L)	废水回用 量(t/a)	排放去向
生产废水	含氮 磷废 水	COD、SS、NH3-N、TP、 总铝、氟化物、总镍、 总铬、总铜	间歇	零排放	采用"反应沉淀+超滤+RO+ 三效蒸发"工艺处理	75	/	全部 回用	全部回用于生产环节, 蒸发结晶外售利用
	含铬 废水	COD、SS、总铬	间 歇	零排放	采用"还原沉淀+砂滤+单效 蒸发"工艺处理	15	/	全部 回用	全部回用于生产环节, 蒸发结晶委外处理

表 3-1 全厂水污染物产生及排放情况

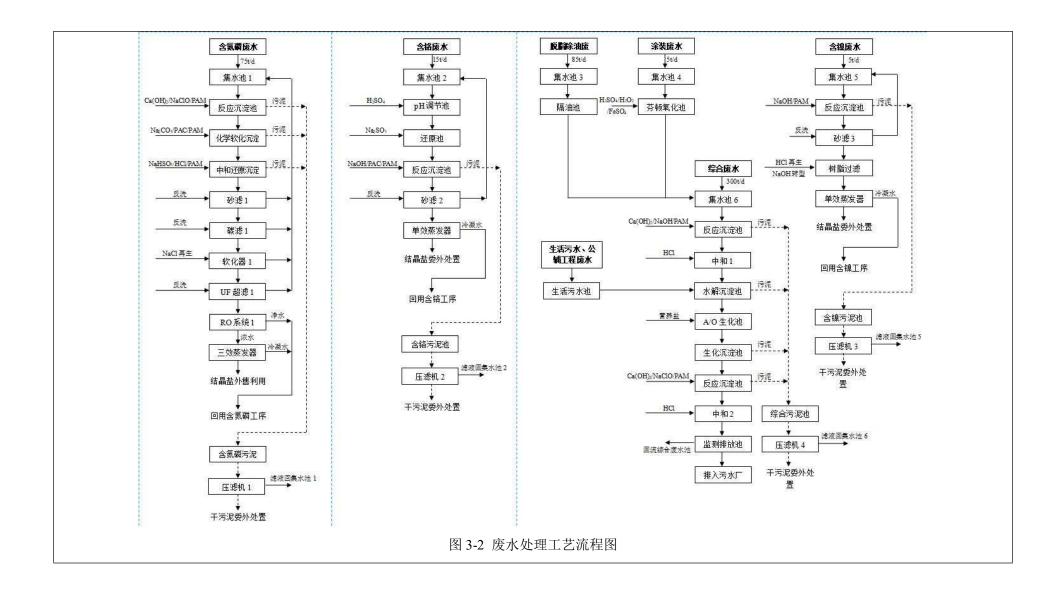

	含镍 废水	COD、SS、总镍	间歇	零排放	采用"反应沉淀+砂滤+树脂 过滤+单效蒸发"工艺处理	5	/	全部 回用	全部回用于生产环节, 蒸发结晶委外处理
	脱脂 除油 废水	COD、SS、LAS、石油 类	间歇	/	采用隔油池预处理	85	/	/	出水进综合废水处理设
	涂装 废水	COD、SS	间 歇	/	采用芬顿氧化池预处理	5	/	/	施进一步处理
	综合 废水	COD、SS、LAS、石油 类、氟化物、总铝、总 铜、色度	间歇	42131	采用"反应沉淀+中和+水解 沉淀+A/O 生化+生化沉淀+ 反应沉淀+中和"工艺处理	300	/	/	
生活废水	生活污水	COD、SS、NH3-N、TP	间歇	11280	进污水站处理后接管市政 污水管网	/	/	/	以 油 汁 + b c + c + h)
	纯水制备浓水	COD, SS		13338	部分回用,其余进综合废水 处理设施后接市政管网	/	/	5142	处理达接管标准后排入 苏州市相城区黄埭污水 处理有限公司集中处理
公辅用水	锅炉 房排 放水	COD、SS	间歇	87	进入综合废水处理设施后	/	/	/	
· 八	冷却 塔排 水	COD, SS	间歇	12	接管市政污水管网	/	/	/	

图 3-1 废水处理站

第 37 页 共 73 页

2、废气

(1) 切削废气

在每台使用切削液的机加工设备上方安装集气罩对切削废气进行收集,收集废气在风机的带动下进入1套"水喷淋+活性炭吸附处理装置"处理后,由1根27米高1#排气筒高空排放。

(2) 机加工打磨废气

废气经打磨工作台自带水幕除尘装置处理后由1根27米高2#排气筒高空排放。

(3) 硫酸雾废气

在产生硫酸雾的各槽体两侧设置顶吸、侧吸风孔,产线均设置为车厢式密闭抽风,收集的酸雾废气在风机的带动下进入2套硫酸雾洗涤塔处理后,由1根27米高4#排气筒高空排放。

(4) 氮磷氟酸雾废气

在产生硝酸雾、磷酸雾和氟化物的各槽体两侧设置顶吸、侧吸风孔,产线均设置为车厢式密闭抽风,收集的酸雾废气在风机的带动下进入1套氮磷氟酸雾洗涤塔处理后,由1根27米高5#排气筒高空排放。因分阶段建设,目前磷酸雾和氟化物暂未产生,产生硝酸雾的部分目前与环评一致。

(5) 铬酸雾废气

在产生铬酸雾的各槽体两侧设置顶吸、侧吸风孔,产线均设置为车厢式密闭抽风,收集的铬酸雾先进入铬酸雾回收装置进行回收,循环使用,余量废气进入后续铬酸雾洗涤塔进一步处理,设1套"铬酸雾回收+洗涤塔处理装置",尾气由1根27米高7#排气筒高空排放。

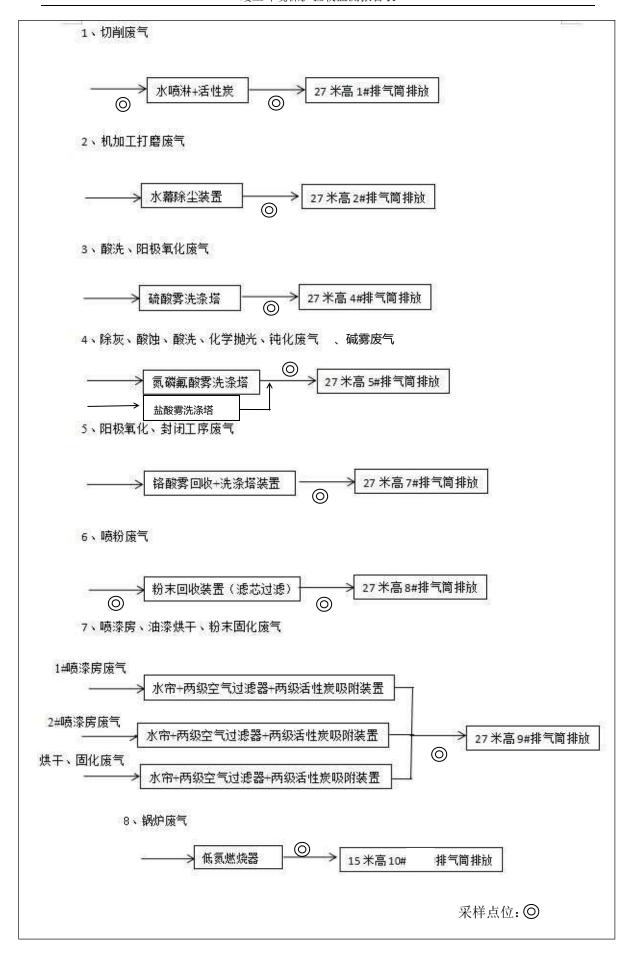
(6) 碱雾废气

在产生碱雾的各槽体两侧设置顶吸、侧吸风孔,产线均设置为车厢式密闭抽风,收集的碱雾 在风机的带动下进入盐酸雾洗涤塔进行酸碱中和处理后,汇集至1根27米高5#排气筒高空排放。

(7) 喷粉废气

经离心风机负压收集后进入1套粉末回收装置中,采用滤芯过滤后回收到供粉桶中循环使用, 尾气由1根27米高8#排气筒高空排放。

(8) 喷漆房、油漆烘干、粉末固化废气


调漆房和喷漆房废气采用2套(2个喷漆房各1套)"水帘+两级空气过滤器+两级活性炭吸附装置"处理;油漆烘干废气和粉末固化废气采用1套"水喷淋塔+两级活性炭吸附装置"处理;尾气汇集至1根27米高9#排气筒高空排放。

本项目废气产生及排放情况见表 3-2,废气处理工艺见图 3-2,废气处理设施见图 3-3。

表 3-2 本项目废气产生及排放情况

名称	污染源	污染 因子	治理设施及工 艺	排气 筒高 度	排放 去向	治理设施监测点设置
切削废气	切削液	非甲烷总烃、 颗粒物	水喷淋+活性 炭吸附处理装 置	27	1#排气筒	排气筒进出口按规范开 孔

机加工打 磨废气	打磨	颗粒物	水幕除尘装置	27	2#排气筒	排气筒出口按规范开孔
硫酸雾废 气	酸洗、阳极氧化	硫酸雾	硫酸雾洗涤塔	27	4#排气筒	排气筒出口按规范开孔
氮磷氟酸 雾废气	除灰、酸蚀、 酸洗、化学抛 光、钝化	氮氧化物、氟 化物、磷酸雾 (其中氟化 物、磷酸雾暂 未产生)	氮磷氟酸雾洗 涤塔	27	5#排气筒	排气筒出口按规范开孔
碱雾废气	碱雾	碱雾	盐酸雾洗涤塔			
铬酸雾废 气	阳极氧化、封 闭工序	铬酸雾	铬酸雾回收+ 洗涤塔处理装 置	27	7#排气筒	排气筒出口按规范开孔
喷粉废气	喷粉	颗粒物	粉末回收装置 (滤芯过滤)1 套	27	8#排气筒	排气筒进出口按规范开 孔
喷漆房、油漆烘干、粉末固化废 气	喷漆、烘干、 固化		喷漆房废气: 水帘+两级空 气过滤器+两 级活性炭套; 油漆型干、粉 末固化塔牛两 级活性炭吸 水质性炭吸 装置 1 套;	27	9#排气筒	排气筒出口按规范开孔
锅炉	锅炉	颗粒物、二氧 化硫、氮氧化 物		15	10#排气筒 (锅炉一用 一备,共用一 个排口)	排气筒出口按规范开孔
无组织废	车间未收集废	非甲烷总烃、 颗粒物、硫酸 雾、铬酸雾、 氮氧化物	/	/	周围大气	/

图 3-2 废气处理工艺流程图

图 3-3 废气排放设施图

3、噪声

本项目噪声源主要为各类机加工设备、空压机等机械运转产生的噪声,主要设备的噪声源强 如下表所示。已采取隔声、减振、合理布局等综合治理措施。

表 3-3 生产设备噪声源强表

设备名称	源强 dB(A)	与厂界最近距 离	治理措施
加工中心	85	西 35m	隔声、减振、合理布局

走芯复合车床	85	西 35m	隔声、减振、合理布局
数控车床	85	西 35m	隔声、减振、合理布局
车铣复合数控车床	85	西 35m	隔声、减振、合理布局
数控冲床	80	西 25m	隔声、减振、合理布局
激光切割机	80	西 25m	隔声、减振、合理布局
镂铣机	75	北 50m	隔声、减振、合理布局
折弯机	75	北 30m	隔声、减振、合理布局
攻丝机	75	北 25m	隔声、减振、合理布局
 压铆机	75	北 25m	隔声、减振、合理布局
空压机	90	西 25m	隔声、减振、合理布局
循环水泵	85	北 15m	隔声、减振、合理布局
风机	85	东 30m	隔声、减振、合理布局

4、固体废物

本项目营运期产生的工业固废主要分为一般固废和危险固废,一般固废主要为:金属边角料、不合格品、废磨料、除尘废滤芯、废布袋、除尘器收集的金属粉尘、含氮磷蒸发结晶均外售处置;危险固废主要为:废切削液、碱性废液、酸性废液、含铬废液、在线过滤废滤芯、含铬蒸发结晶及污泥、含镍蒸发结晶及污泥、综合废水处理污泥、废活性炭、漆渣、洗枪废液、含化学品包装桶(袋),各类危险废物均与有资质处置单位签订了处置协议。本项目员工日常产生的生活垃圾由环卫部门定时清运。

企业设有独立的一般固废堆场和危废堆场。一般固废堆场面积为 75m², 地面基础及内墙采用防水混凝土,防止雨水进入产生二次污染,一般工业固废堆场建设符合《一般工业固体废弃物贮存、处置场污染控制标准》(GB18599-2001)及 2013 年修改单(公告 2013 年第 36 号)相关规定。各废弃物按类别和性质分区堆放。项目设置两处危废暂存场所,面积分别为 64m²、18m²,危废储存于室内,堆场地面已做防渗处理,废液吨桶底部配有防渗托盘,各类危废分区堆放,定期转移至有资质单位进行处理,堆场内设有灭火器、防爆照明灯,危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2001)及 2013 年修改单(公告 2013 年第 36 号)、省生态环境厅关于进一步加强危险废物污染防治工作的实施意见(苏环办[2019]327 号)、省生态环境厅关于做好江苏省危险废物全生命周期监控系统上线运作工作的通知(苏环办[2020]401 号)相关规定。

本项目固体废物处置情况详见表 3-4, 危废暂存场所见图 3-4。

表 3-4 本项目固体废物处置情况表

序 号	固体废物名 称	属性	废物代码	环评产生量 (t/a)	实际产生量 (t/a)	利用处置方式	暂存场 所面积
1	金属边角料		82	10	10		
2	不合格品		82	3	3		
3	废磨料	般	82	3	3	收集外售苏州广	
4	除尘废滤芯	固	82	0.1	0.1	承再生资源股份	75m ²
5	废布袋	慶	82	1	1	有限公司	
6	除尘器收集 的金属粉尘		84	3.9	3.9		

7	含氮磷蒸发		99	107	107						
	结晶			107	107						
8	废切削液		HW09 900-006-09	20							
9	碱性废液		HW17 336-064-17	32							
1 0	酸性废液	HW17 336-064-17 27									
1	在线过滤废 滤芯		HW49 900-041-49								
1 2	含镍蒸发结 晶及污泥	危险	HW17 336-054-17	21		委托苏州市荣望 环保科技有限公					
1 3	综合废水处 理污泥	一度物	HW17 336-064-17	400		司、苏州新区环 保服务中心有限					
1 4	废活性炭	120	HW49 900-039-49	13.2		公司回收处置	64m ² 、 18m ²				
1 5	漆渣		HW12 900-299-12	1			10111				
1 6	洗枪废液		HW12 900-256-12	0.35							
1 7	含化学品包 装桶(袋)						HW49 900-041-49	4.5			
1 8	含铬废液		HW17 336-069-17	6		□ □ 委托苏州新区环 □ 保服务中心有限					
1 9	含铬蒸发结 晶及污泥		HW17 336-068-17	13		公司回收处置					
2 0	生活垃圾	一般固废	99	150	150	环卫部门清运	环卫音 门				

图 3-4 危废暂存场所

表四

建设项目环境影响报告表主要结论及审批部门审批决定:

1、建设项目环评报告表的主要结论与建议

1.1 主要结论

①废水:本项目含氮、磷、铬、镍生产废水经处理后循环使用,不外排;其它生产废水与 生活污水经预处理达接管标准后和公辅工程废水一起排入苏州市相城区黄埭污水处理有限公 司处理,尾水排入黄花泾。

②废气:本项目机加工工序产生的油雾颗粒物和非甲烷总烃配套水喷淋+活性炭吸附处理装置处理后尾气经 27 米高 1#排气筒达标排放,机加工打磨工序产生的粉尘颗粒物配套水喷淋除尘装置处理后尾气经 27 米高 2#排气筒达标排放,喷砂(抛丸)工序产生的粉尘颗粒物配套旋风分离器+布袋除尘装置处理后尾气经 27 米高 3#排气筒达标排放,检查及表面处理工艺产生的硫酸雾、氟化物、硝酸雾、盐酸雾、磷酸雾配套酸雾洗涤塔处理装置处理后尾气经 27 米高 4#~6#排气筒达标排放,铬酸雾配套铬酸雾回收装置+洗涤塔处理装置处理后尾气经 27 米高 7#排气筒达标排放,喷粉工序产生的粉尘颗粒物配套粉末回收装置(滤芯过滤)回收处理后尾气经 27 米高 7#排气筒达标排放,喷粉工序产生的粉尘颗粒物配套粉末回收装置(滤芯过滤)回收处理后尾气经 27 米高 8#排气筒达标排放,涂装后续加工产生的漆雾颗粒物和非甲烷总烃配套水帘+活性炭吸附处理装置处理后尾气经 27 米高 9#排气筒达标排放,颗粒物、非甲烷总烃排放能满足《大气污染物综合排放标准》(GB16297-1996)表 2 二级排放标准要求,酸雾废气排放能满足《电镀污染物排放标准》(GB21900-2008)表 5 标准要求,其中磷酸雾能满足上海市地方标准《大气污染物综合排放标准》(DB31/933-2015)表 1 标准要求,锅炉采用低氮燃烧技术,烟气排放可满足《锅炉大气污染物排放标准》(GB13271-2014)中表 3 中燃气锅炉污染物排放标准要求。

③噪声:本项目各类机加工设备、喷砂机、抛丸机、空压机等设备产生的噪声经减振、隔声和距离衰减后厂界可以达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

④固废:本项目产生的金属边角料、不合格品、废磨料、除尘废滤芯、废布袋、除尘器收集的金属粉尘、含氮磷蒸发结晶由厂家收集后外售;废切削液、碱性废液、酸性废液、含铬废液、在线过滤废滤芯、含铬蒸发结晶及污泥、含镍蒸发结晶及污泥、综合废水处理污泥、废活性炭、漆渣、洗枪废液、含化学品包装桶(袋)委托有资质单位处理;生活垃圾由环卫部门统一处理。固废零排放。

本项目所采取的废水、废气、噪声、固废污染防治措施及方案切实可靠,能够保证达标排放。

综上所述,通过对本项目所在地区的环境现状评价以及对项目的环境影响进行分析,在落实报告提出的各项污染措施(废水、废气、噪声、固废)的前提下,认为本项目对周围环境的影响可控制在允许范围内,具有环境可行性。

设单位在实际建设和运行中必须严格按照申报内容和环评中要求实施, 若有异于申报和环评内
次十世上人际建议和211 [2 次/ 相 [2 流] 和 [3
容的活动须按照要求另行申报。
1.2 建议与要求
无。
2、审批部门的决定
见附件。

表五

验收监测质量保证及质量控制:

- (1) 本次监测过程严格按《环境监测技术规范》中的有关规定进行,监测的质量保证按照 苏州科星环境检测有限公司编制的《质量手册》中的要求,实施全过程质量保证。按质控要 求废水样品采集 10%的平行双样,样品分析加 10%质控样,对能够加标的项目按 10%进行 加标回收。
- (2) 监测人员均经过考核并持有合格证书,所有监测仪器均经过计量部门检定,并在有效 期内,现场监测仪器使用前须经过校准。监测数据实行三级审核。
- (3)验收监测期间,公司污染治理设施运行正常,生产负荷达到验收项目设计能力75%以 上。

				表 5-1	监测质	控结果	(-)				
检				平行样		J.	加标回收	Z	标	样	空白
	监测 因子	样品数	数量 (个)	检查 率 (%)	合格 率 (%)	数量 (个)	检查 率 (%)	合格 率 (%)	数量 (个)	合格 率 (%)	数量 (个)
	非甲烷 总烃	14 4	16	11.1	100	/	/	/	6	100	4
	总悬浮 颗粒物	24	4	16.7	100	/	/	/	/	/	/
无 组	硫酸雾	24	/	/	/	/	/	/	1	100	6
织 废	氟化物	24	/	/	/	/	/	/	1	100	6
气	氯化氢	24	/	/	/	/	/	/	1	100	6
	铬酸雾	24	/	/	/	/	/	/	1	100	4
	氮氧化 物	24	/	/	/	/	/	/	1	100	6
	颗粒物	48	/	/	/	/	/	/	/	/	16
	非甲烷 总烃	54	6	11.1	100	/	/	/	4	100	4
	硫酸雾	6	/	/	/	/	/	/	1	100	6
有组	氮氧化 物	6	/	/	/	/	/	/	1	100	4
织废	氟化物	6	/	/	/	/	/	/	1	100	6
气	铬酸雾	6	/	/	/	/	/	/	1	100	4
	二氧化硫	12	/	/	/	/	/	/	1	100	/
	氮 一 氧 氧 化 化	12	/	/	/	/	/	/	1	100	/

物	氮						
	二氧化氮				1	100	

备注: 1、平行样检查包括现场平行和实验室平行;

2、空白包括现场空白和实验室空白。

表 5-2 监测质控结果(二)

	表 5-2 监测质控结果 (二)											
				平行样		J	加标回收	Z	标	样	空白	
检测 类别	监测 因子	样品数	数量 (个)	检查 率 (%)	合格 率 (%)	数量 (个)	检查 率 (%)	合格 率 (%)	数量 (个)	合格 率 (%)	数量 (个)	
	化学 需氧 量	56	12	21.4	100	/	/	/	2	100	8	
	pH 值	8	2	12.5	100	/	/	/	/	/	/	
	镍	24	8	25.0	100				2	100	6	
	总铬	24	7	29.2	100	/	/	/	1	100	4	
	总磷	34	8	23.5	100	4	11.8	100	/	/	4	
	氨氮	24	6	25.0	100	3	12.5	100	/	/	4	
	总氮	34	8	23.5	100	4	11.8	100	/	/	6	
水	阴离 子表 面活 性剂 (LA S)	8	3	37.5	100	1	12.5	100	/	/	3	
	氟化 物	8	3	37.5	100	/	/	/	1	100	3	
	铝	8	4	50.0	100	2	25.0	100	/	/	6	
	铜	8	4	50.0	100	/	/	/	2	100	6	
	石油 类	8	/	/	/	/	/	/	2	100	3	
# N.	六价 铬	8	3	37.5	100	/	/	/	1	100	4	

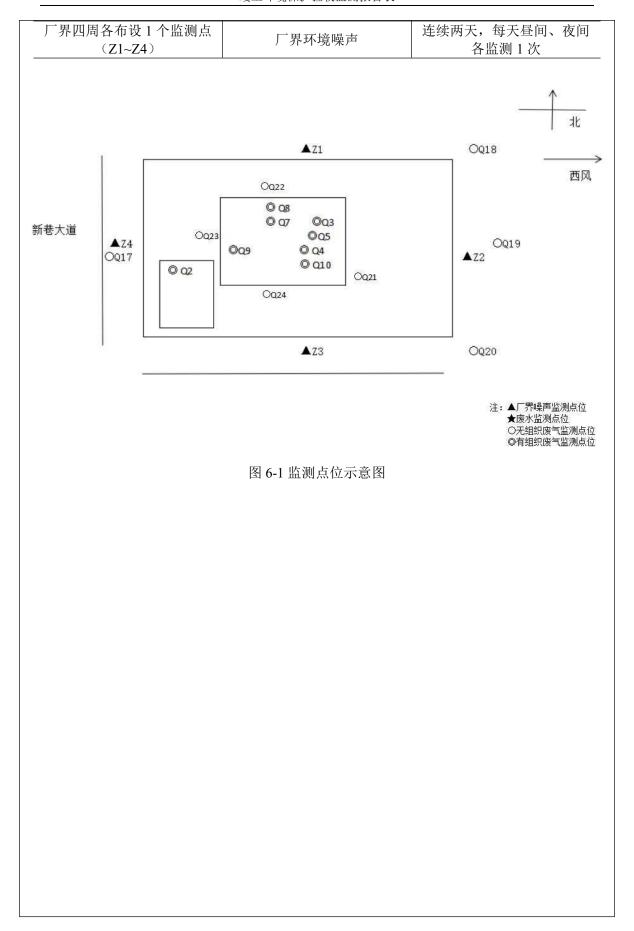
备注: 1、平行样检查包括现场平行和实验室平行;

2、空白包括现场空白和实验室空白。

表 5-3 噪声监测质量控制表

	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)												
监测	监测	 检测日期	校准器	标准声	测试前	测试后	判定						
类别	因子	巡侧口别	编号	压级	校准值	校准值	结果						

					dB (A)	dB (A)	dB (A)			
噪声	一界噪声	2022		0309022	93.9	93.7	93.7	合格		
噪声	一界噪声	2022 9		0309022	93.9	93.7	93.7	合格		
噪声	一界噪声	2022	.01.2 昼	0309022	93.9	93.7	93.7	合格		
噪声	一界噪声	2022		0309022	93.9	93.7	93.7	合格		
			表	5-4 监测分析	方法一览表	長				
检测类别	检测类别 项目				松	〕测依据				
		pH 值		水和废水	、pH 值的测	測定 电极法	HJ 1147-2	020		
	化	学需氧量		水质 化学	需氧量的测	定 重铬酸盐	盐法 HJ 828	-2017		
	7	悬浮物		水质 悬	浮物的测定	重量法 GI	B/T 11901-1	989		
		氨氮		水质 氨氮的]测定 纳氏	试剂分光光	度法 HJ 53	5-2009		
		总磷	水	水质 总磷的测定 钼酸铵分光光度法 GB/T 11893-1989						
		总氮		水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 HJ 636-2012						
	į	氟化物		水质 氟化物	的测定 离	子选择电极	法 GB/T 74	84-1987		
		色度		水质 色度的测定 稀释倍数法 HJ1182-2021						
废水	阴离	阴离子表面活 性剂		水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 7494-1987						
	-	石油类	7	水质 石油类和动植物油类的测定 红外分光光度法 HJ 637-2018						
		铝		水质 32 种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015						
		铜	水	水质 32 种元素的测定 电感耦合等离子体发射光谱法 HJ 776-2015						
		镍	水	.质 32 种元素	医的测定 电		哥子体发射光	光谱法 HJ		
	-,	六价铬		水质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987						
		总铬		水	质 总铬的测	则定 GB/T 7	466-1987			
		电导率	实	验室电导率位	义法 《水利 国家环保总			(第四版)		
	非	甲烷总烃	环	境空气 总烃	、甲烷和非		测定 直接	进样-气相		
无组织废 ^怎		· 浮颗粒物 (TSP)	勿环	环境空气 总悬浮颗粒物的测定 重量法 GB/T15432-1995 及其修改单						
儿纽约及	\ <u> </u>	流酸雾	<u> </u>	固定污染源废			色谱法 HJ :	544-2016		
	1	氟化物	Ð	下境空气 氟化		虑膜采样/氟 55-2018	离子选择电	极法 HJ		


					-		
	氯化氢		不境空气和废气 氯化				
	铬酸雾	固	定污染源排气中铬酸 法	沒雾的测定 二苯碳酰 HJ/T 29-1999	二肼分光光度		
	氮氧化物	环	境空气 氮氧化物(- 萘乙二胺分光光)	一氧化氮和二氧化氮 度法 HJ 479-2009 及			
	颗粒物		固定污染源废气 低	(浓度颗粒物的测定 836-2017	重量法 HJ		
	非甲烷总烃	固	定污染源废气 总烃、 谱	甲烷和非甲烷总烃 法 HJ 38-2017	的测定 气相色		
	氮氧化物	固	定污染源排气中氮氧	〔化物的测定 盐酸萘 HJ/T43-1999	乙二胺光度法		
	氟化物	大		物的测定 离子选择 HJ/T 67-2001	电极法		
有组织废气	硫酸雾	1	固定污染源废气 硫酸	雾的测定 离子色谱法	E HJ 544-2016		
	铬酸雾	固	定污染源排气中铬酸 法	俊雾的测定 二苯碳酰 HJ/T 29-1999	二肼分光光度		
	烟气黑度	[固定污染源排放烟气 E	黑度的测定 林格曼灯 IJ/T 398-2007	因气黑度图法		
	二氧化硫		固定污染源废气 二	氧化硫的测定 定电位 57-2017	立电解法 HJ		
	氮氧化物		固定污染源废气 氮氧化物的测定 定电位电解法 HJ 693-2014				
噪声	厂界环境噪声		工业企业厂界环境	噪声排放标准 GB 1	2348-2008		
	表 5-5	5 主	要监测仪器设备一览	范表(一)			
仪	器名称		型号	仪器编号	检定有效期		
西			6010M	0316016	2022-10-27		
电	导率仪		3010M	0315066	2022-12-12		
气象	象参数仪		5500	0317016	2022-11-01		
一体式烟	气流速监测仪		3060-A	0319020	2022-11-17		
空气	气采样器		崂应 2020	0316020	2022-03-25		
自动炸	因尘测试仪		崂应 3012H	0321021	2022-06-20		
大流量低浓	度烟尘/气测试仪		崂应 3012H-D	0319027	2022-05-13		
大流量低浓	度烟尘/气测试仪		崂应 3012H-D	0319028	2022-12-13		
智能组	宗合采样器		ADS-2062E	0318016	2022-07-11		
智能组	宗合采样器		ADS-2062E	0318017	2022-07-11		
智能约	宗合采样器		ADS-2062E	0318018	2022-07-11		
智能组	宗合采样器		ADS-2062E	0318019	2022-07-11		
智能组	宗合采样器		ADS-2062E (2.0)	0320001	2022-03-28		

智能综合采样器	ADS-2062E (2.0)	0320002	2022-03-28
智能综合采样器	ADS-2062E (2.0)	0320003	2022-03-28
智能综合采样器	ADS-2062E (2.0)	0320004	2022-03-28
大气综合采样器	TH-150C	0315051	2022-11-09
高负压智能综合采样器	ADS-2062G	0318025	2022-11-09
高负压智能综合采样器	ADS-2062G	0318026	2022-11-09
高负压智能综合采样器	ADS-2062G	0318029	2022-11-09
高负压智能综合采样器	ADS-2062G	0318030	2022-11-09
声级计	AWA6228	0309021	2022-11-15
声校准器	AWA6221B	0309022	2022-11-15
气象参数仪	5500	0319025	2022-10-21
大流量低浓度烟尘/气测试仪	崂应 3012H-D	0319026	2022-05-13
电导率仪	3010M	0315066	2022-12-12
电子天平	FA1104	0317004	2022-08-26
电子天平	BT25S	0318004	2022-08-26
数显滴定器	50ml	0320050	2022-08-23
电子天平	BSA124S-CW	0309004	2022-08-26
紫外可见分光光度计	TU-1810	0317014	2022-03-02
紫外分光光度计	TU-1810	0320024	2022-08-30
离子计	PXSJ-226	0319001	2022-02-24
红外分光油分析仪	OL1010	0320027	2022-08-30
电感耦合等离子发射光谱仪	5110ICP-OES	0320028	2022-11-12
单火焰原子吸收光谱仪	ICE3000	0318001	2022-09-02
气相色谱仪	A60	0321023	2023-08-30
离子色谱仪	ICS-600	0317015	2022-09-02
表 5-6 3	主要监测仪器设备一览	范表 (二)	
仪器名称	型号	仪器编号	检定有效期
电导率仪	3010M	0315066	2022-12-12
气象参数仪	5500	0319025	2022-10-21
紫外可见分光光度计	TU-1810	0317014	2023-02-14

紫外分光光度计	TU-1810	0320024	2022-08-30
红外分光油分析仪	OL1010	0320027	2022-08-30
单火焰原子吸收光谱仪	ICE3000	0318001	2022-09-02
离子计	PXSJ-226	0319001	2023-02-28
数显滴定器	50ml	0320050	2022-08-23
电子天平	BSA124S-CW	0309004	2022-08-26

表六

验收监测内容:		
1、废水		
监测点位	监测项目	监测频次
综合废水处理设施集水池 S1	总氦、总磷	
综合废水排放口 S2	pH、COD、SS、氨氮、总氮、 总磷、LAS、氟化物、铝、铜、 石油类、总铬、总镍、六价铬、 色度	连续两天,每天监测4次(等
含氮磷废水处理设施集水池 S3、回用口 S4	电导率、COD、总氮、总磷、 氨氮	时间间隔采样)
含铬废水处理设施集水池 S5、回用口 S6	电导率、COD、总铬	
含镍废水处理设施集水池 S7、回用口 S8	电导率、COD、总镍	
生产废水 S9	总氮、总磷	连续两天,每天一次
2、废气		
监测点位	监测项目	监测频次
机加工废气处理设施进口 Q1、1#排气筒 Q2	颗粒物、非甲烷总烃排放浓度、 排放速率	连续两天,每天监测3次
2#排气筒 Q10	颗粒物排放浓度、排放速率	连续两天,每天监测3次
	硫酸雾排放浓度、排放速率	连续两天,每天监测3次
5#排气筒出口 Q4	氮氧化物排放浓度、排放速率	连续两天,每天监测3次
7#排气筒 Q5	铬酸雾排放浓度、排放速率	连续两天,每天监测3次
喷粉废气处理设施进口 Q6、 8#排气筒 Q7	颗粒物排放浓度、排放速率	连续两天,每天监测3次
9#排气筒 Q8	颗粒物、非甲烷总烃排放浓度、 排放速率	连续两天,每天监测3次
小锅炉废气排口 Q9	颗粒物、二氧化硫、氮氧化物排 放浓度、排放速率以及烟气黑度	
大锅炉废气排口 Q9	颗粒物、二氧化硫、氮氧化物排 放浓度、排放速率以及烟气黑度	
厂界四周布设 4 个监测点 Q17~Q20	非甲烷总烃、颗粒物、硫酸雾、 氯化氢、铬酸雾、氮氧化物排放 浓度以及气象参数	连续两天,每天监测3次
厂区车间门、窗口布设3个 监测点Q21~Q24	非甲烷总烃	连续两天,每天监测3次
备注	两台锅炉共用一个排口,一用一 孔条件,	
3、噪声		
监测点位	监测项目	监测频次

表七

验收监测期间生产工况记录:

2021年12月27日~12月28日、2022年01月19日~20日,02月27~28日、06月26日~27日苏州科星环境检测有限公司对江苏意可航空科技股份有限公司新建生产用房,年产机电产品及配件600万件项目(重新报批)第一阶段进行了环境保护验收监测,监测期间各项环保治理设施正常运行。全公司员500人,本项目机加工车间3班24小时工作制,特种工艺车间2班16小时工作制,年运行7200h,验收监测期间生产工况详见表7-1。

日期	产品名称	环评年产量	实际年产量	实际 日产量	生产 负荷
2021年12月 27日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2021年12月 28日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2022年01月 19日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2022年01月 20日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2022年02月 27日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2022年02月 28日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2022年06月 26日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%
2022年06月 27日	机电产品及配 件	600 万件	237.5 万件	7125 件	90%

表 7-1 生产工况检查表

验收监测结果:

1、苏州科星环境检测于 2021 年 12 月 27 日~28 日对项目废水初次取样检测,取样结果显示综合废水排口 S2 中总铬污染物检出(经废水站管理人员分析,可能为监测期间设备运行情况异常导致),且综合废水集水池总氮总磷数据异常(经排查,为企业误将含氮废水接入综合废水集水槽,详细见后面数据报告附件),故以上整改调试后, 于 2022 年 02 月 27 日~28 日、2022 年 06 月 26 日~27 日重新取样分析,废水监测结果见表 7-2~7-9。

7-2	废水监测结果	(-)

监测点	<mark>监测日</mark>	<mark>监测</mark>	监测结果(mg/L) pH 为无量纲					
位	期	<mark>项目</mark>	第一次	第二次	第三次	第四次	均值或范围	
综合废	2022年	总氮	0.823	0.812	0.881	0.916	/	
水集水	<mark>06月26</mark> 日	总磷	0.049	0.036	0.036	0.032	<mark>/</mark>	
池 S1 	<mark>2022 年</mark>	总氮	0.794	0.835	0.708	0.858	/	

	<mark>06月27</mark> 日	总磷	0.059	0.058	0.043	0.036	<u>/</u>
	2022年 06月26	总氮	0.557	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>
生产用	06月26 日	总磷	0.010	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>
水	<mark>2022年</mark> 06月27	总氮	0.488	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>
	日	总磷	0.014	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>	<mark>/</mark>

| 1、pH 值为无量纲;

备注

- 2、所有平行样品均以均值计;
- 3、"L"表示未检出,对应数值为检出限;
- 4、采样方式为瞬时采样,仅对当时所采集样品负责。 7-3 废水监测结果(二)

	7-3 废水监测结果(二)									
监测	监测	监测	Ī	监测结果(mg/L)	pH 为无	量纲	标准	评	
点 点 位	日期	项目	第一次	第二次	第三次	第四次	均值或范 围	值 mg/L	价	
		pH 值	7.8	7.9	7.8	7.9	7.8~7.9	6~9	合格	
		化学需 氧量	10	10	11	11	11	300	合格	
		镍	0.05L	0.05L	0.05L	0.05L	0.05L	不得 检出	合 格	
		总铬	0.004L	0.004L	0.004L	0.004L	0.004L	不得 检出	合 格	
		总磷	0.171	0.169	0.156	0.161	0.164	2	合 格	
		氨氮	0.287	0.266	0.307	0.291	0.288	25	合 格	
综	2022	总氮	2.36	2.83	3.19	3.25	2.91	/	/	
废	合 度 年 02	悬浮物	8	6	5	7	7	100	合 格	
水排	日	LAS	0.05L	0.05L	0.05L	0.05L	0.05L	20	合 格	
S2		氟化物	1.16	1.20	1.26	1.21	1.21	20	合 格	
		铝	0.190	0.183	0.170	0.209	0.188	2.0	合 格	
		铜	0.04L	0.04L	0.04L	0.04L	0.04L	0.3	合 格	
		石油类	0.54	0.46	0.38	0.34	0.43	15	合 格	
		六价铬	0.004L	0.004L	0.004L	0.004L	0.004L	不得 检出	合 格	
		色度	2	2	2	2	2	64	合 格	
	2022 年 02	pH 值	7.9	7.9	7.8	7.7	7.7~7.9	6~9	合格	

月 28 日	化学需 氧量	8	8	8	9	8	300	合格
	镍	0.05L	0.05L	0.05L	0.05L	0.05L	不得 检出	合格
	总铬	0.004L	0.004L	0.004L	0.004L	0.004L	不得 检出	合格
	总磷	0.173	0.184	0.164	0.130	0.163	2	合格
	氨氮	0.396	0.440	0.414	0.388	0.410	25	合格
	总氮	2.72	3.21	3.31	2.90	3.04	/	合格
	悬浮物	7	5	9	6	7	100	合格
	LAS	0.05L	0.05L	0.05L	0.05L	0.05L	20	合格
	氟化物	2.12	1.83	2.03	1.82	1.95	20	合格
	铝	0.246	0.250	0.246	0.240	0.246	2.0	合格
	铜	0.04L	0.04L	0.04L	0.04L	0.04L	0.3	合格
	石油类	0.31	0.32	0.31	0.31	0.31	15	合格
	六价铬	0.004L	0.004L	0.004L	0.004L	0.004L	不得 检出	合格
	色度	2	2	2	2	2	64	合 格

- 1、pH 值为无量纲; 色度单位为倍;
- 备注
- 2、所有平行样品均以均值计;
- 3、"L"表示未检出,对应数值为其检出限;
- 4、采样方式为瞬时采样,仅对当时所采集样品负责。

7-4 废水监测结果

	/一次水血烫和木									
监测			监测结果(mg/L)			pH 为无量纲		标准	去除	 评
点位	点 日期 项目 位		第一次	第二次	第三次	第四次	均值或范 围	值 mg/L	w 率 %	价
		电导率	27.4	29.6	19.7	31.7	27.1	/	/	/
含	2022	化学需 氧量	440	443	448	442	443	/	/	/
氮 年 02	总磷	176	181	184	171	178	/	/	/	
废	1994	氨氮	3.94	3.86	3.88	3.91	3.90	/	/	/
水	总氮	4.78	4.75	4.55	4.73	4.70	/	/	/	
水池	2022	电导率	29.6	33.4	30.1	51.2	36.1	/	/	/
S3	年 02 月 28	化学需 氧量	352	349	343	345	347	/	/	/
	日	总磷	89.9	87.6	93.9	81.2	86.7	/	/	/

				· 文工-1-56 //	17 JE XIIII X	1111111111				
		氨氮	4.21	4.33	4.11	4.37	4.26	/	/	/
		总氮	5.44	4.97	5.00	4.73	5.04	/	/	/
备注	2、电导	异率単位 ガ	品均以均值 ἡμS/cm; 舜时采样,	仅对当时	所采集样 5水监测结					
监测	监测	监测	监注	则结果(n	ng/L)	pH 为无量	量纲	标准	去	评
点位	日期	项目	第一次	第二次	第三次	第四次	均值或 范围	值 mg/L	除 率%	价
		电导率	8.21	7.41	7.11	7.02	7.44	10	/	合格
	2022	化学需 氧量	9	9	8	8	9	10	98.1	合格 合格 合格 合格
	年 02 月 27	总磷	0.094	0.096	0.080	0.065	0.084	0.2	99.9	合 格
含氮咪	日	氨氮	0.170	0.160	0.154	0.171	0.164	1.0	95.8	合格
磷废水		总氮	4.90	3.81	3.65	3.73	4.02	/	14.5	合格
口		电导率	7.42	7.66	7.16	7.11	7.34	10	/	合格
用 口 S4	2022	化学需 氧量	9	9	7	9	9	10	97.6	合格合格合格
51	年 02 月 28	总磷	0.082	0.089	0.076	0.085	0.083	0.2	99.9	合 格
	日	氨氮	0.111	0.114	0.100	0.105	0.108	1.0	97.5	合格合格
		总氮	4.80	2.33	2.21	2.74	3.02	/	40.0	合格
备 注	2、电导	身率単位 ガ	品均以均值 ἡμS/cm; 舜时采样,	仅对当时	所采集样 [水监测结					
监	11左3回1	11た 2回山	监	则结果(n		pH 为无量	量纲	标准	去	ेग
测点位	上 出 日期	斯 斯里 斯里	第一次	第二次	第三次	第四次	均值或 范围	值 mg/L	除 率%	评价
	2022	电导率	4162	4222	4116	3995	4124	1	/	/
含铬	年 02 月 27	化学需 氧量	145	147	139	142	143	/	/	/
废水	日	总铬	43.7	38.4	39.7	41.3	40.8	/	/	/
集水	2022	电导率	4768	4535	4109	5011	4606	1	/	/
水 池 S5	年 02 月 28	化学需 氧量	131	134	137	139	135	/	/	/
$\mathcal{O}\mathcal{O}$	1 H	1	1			I	i .	I	1	1

32.6

29.1

30.5

S5

日

总铬

29.1

31.3

1、所有平行样品均以均值计; 备 2、 中导家总体况。2/

2、电导率单位为μS/cm;

注

3、采样方式为瞬时采样,仅对当时所采集样品负责。

7-7 废水监测结果

				//		1714				
监测	监测	监测	监	测结果(1	mg/L)	pH 为无量	量纲	标准	去	评
点位	日期	项目	第一次	第二次	第三次	第四次	均值或 范围	值 mg/L	除 率%	价
	2022	电导率	9.23	7.82	7.18	6.77	7.75	10	/	合格
含 铬	年 02 月 27	化学需 氧量	4	4	4	4	4	10	97.2	合格
废 水	日	总铬	0.004L	0.004L	0.004L	0.004L	0.004L	不得 检出	/	合格
回用	2022	电导率	7.95	9.87	8.77	7.72	8.58	10	/	合格
池 S6	年 02 月 28	化学需 氧量	5	5	5	5	5	10	96.3	合格
	日	总铬	0.004L	0.004L	0.004L	0.004L	0.004L	不得 检出	/	合格

1、所有平行样品均以均值计;

备 2、电导率单位为μS/cm;注 2、平米大土共經費

3、采样方式为瞬时采样,仅对当时所采集样品负责。

7-8 废水监测结果

				///)1.mr()(1.)	<i>></i> , •				
监测	监测	监测	监	测结果(n	ng/L)	pH 为无量		标准	去	评
点位	日期	项目	第一次	第二次	第三次	第四次	均值或 范围	值 mg/L	除 率%	价
	2022	电导率	1398	1272	1121	1465	1314	/	/	/
含 镍	年 02 月 27	化学需 氧量	251	257	246	251	251	/	/	/
废 水	日	镍	114	119	113	114	115	/	/	/
集	2022	电导率	1498	1571	989.9	2011	1517	/	/	/
水 池 87	年 02 月 28	化学需 氧量	242	249	251	246	247	/	/	/
S7	日	镍	123	126	126	118	123	/	/	/

1、所有平行样品均以均值计;

备 2、"L"表示未检出,对应数值为其检出限;

注 3、电导率单位为μS/cm;

4、采样方式为瞬时采样,仅对当时所采集样品负责。

7-9 废水监测结果

监测	监测	监测	监测	则结果(n	ng/L)	pH 为无量	达 纲	标准	去除	评
点位	点 日期 项目		第一次	第二次	第三次	第四次	均值或 范围	值 mg/L	率%	价
含	2022 年 02	电导率	8.19	7.58	9.28	7.88	8.23	10	/	合格

镍废	月 27 日	化学需 氧量	4	4	4	4	4	10	98.4	合格
水回		镍	0.05L	0.05L	0.05L	0.05L	0.05L	不得 检出	/	合格
用池	2022	电导率	7.12	7.53	8.37	9.23	8.06	10	/	合格
S7	年 02 月 28	化学需 氧量	4	4	4	4	4	10	98.4	合格
	日	镍	0.05L	0.05L	0.05L	0.05L	0.05L	不得 检出	/	合格

- 1、所有平行样品均以均值计;
- 备 2、"L"表示未检出,对应数值为其检出限;
- 注 3、电导率单位为μS/cm;
 - 4、采样方式为瞬时采样,仅对当时所采集样品负责。
- 2、苏州科星环境检测有限公司于 2021 年 12 月 27 日~28 日对项目废气进行监测,第一次由于企业人员误将 4#排气筒与 7#排气筒混淆,并且遗漏了打磨废气排气筒 (2#),故于 2022 年 01 月 19 日~20 日对以上 2#、4#、7#排气筒重新进行补测。有组织废气监测结果见下表表 7-10 有组织废气监测结果

				- 1112217 1//20 12	m. / (4 - 11 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /			
监测	监测	监测			监测结果		标准	评
点 _位	日期	项目	単位	第一次	第二次	第三次	限值	价
		排气筒高度	m		/		/	/
		废气流量	Nm ³ /h	20832	20825	21189	/	/
机	2021.	颗粒物 排放浓度	mg/m ³	2.9	2.7	2.7	/	/
加 工	12.27	颗粒物 排放速率	kg/h	6.04×10 ⁻²	5.57×10 ⁻²	5.74×10 ⁻²	/	/
废气		非甲烷总烃 排放浓度	mg/m ³	0.79	0.76	0.68	/	/
处理		非甲烷总烃 排放速率	kg/h	1.65×10 ⁻²	1.58×10 ⁻²	1.44×10 ⁻²	/	/
设 施		废气流量	Nm ³ /h	19357	19784	19976	/	/
进口		颗粒物 排放浓度	mg/m ³	2.9	3.0	2.7		
Q1	2021. 12.28	颗粒物 排放速率	kg/h	5.59×10 ⁻²	5.89×10 ⁻²	5.48×10 ⁻²	/	/
		非甲烷总烃 排放浓度	mg/m ³	0.75	0.70	0.66	/	/
		非甲烷总烃 排放速率	kg/h	1.45×10 ⁻²	1.38×10 ⁻²	1.32×10 ⁻²	/	/
备 注	1、"N 示。	D"表示未检出	占,颗粒	物的检出限为		寸应的排放速≥	率以"/'	, 表

表 7-11 有组织废气监测结果

监测结果

标准

评

单位

监

监测

监测

- 测 点 位	日期	项目		第一次	第二次	第三次	限值	价
		排气筒高度	m		27		/	/
		废气流量	Nm³/h	19587	20642	20317	/	/
		颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	合格
机 加	2021.1	颗粒物 排放速率	kg/h	/	/	/	1	合格
工废	2.27	颗粒物 去除效率	%	/	/	/	/	/
气处		非甲烷总烃 排放浓度	mg/m ³	0.38	0.33	0.39	60	合格
理设		非甲烷总烃 排放速率	kg/h	7.44×10 ⁻³	6.81×10 ⁻³	7.92×10 ⁻³	3	合格合格
施出		非甲烷总烃 去除效率	%	54.9	56.9	45.0	/	/
		废气流量	Nm ³ /h	18720	19425	19015	/	/
Q2 (1#		颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	合格合
排 气		颗粒物 排放速率	kg/h	/	/	/	1	合格
筒)	2021.1 2.28	颗粒物 去除效率	%	/	/	/	/	/
		非甲烷总烃 排放浓度	mg/m ³	0.27	0.41	0.44	60	合格
		非甲烷总烃 排放速率	kg/h	5.05×10 ⁻³	7.96×10 ⁻³	8.37×10 ⁻³	3	合格合格
		非甲烷总烃 去除效率	%	65.2	42.3	36.6	/	/
备	1, "N	D"表示未检出	1,颗粒物	勿的检出限为	1.0mg/m^3 , $\bar{\chi}$		率以"/"	表

备 1、"ND"表示未检出,颗粒物的检出限为1.0mg/m³,对应的排放速率以"/"表注 示。

表 7-12 有组织废气监测结果

			17 24 7/1/2	ATT IVI >H > IC	2			
监测	 监测日期	监测	单位		监测结果		标准	评
点位		项目	半 型	第一次	第二次	第三次	限值	价
酸洗、		排气筒高度	m		27		/	/
阳极 氧化		废气流量	Nm³/h	72889	72787	72709	/	/
废气 处理	2021.12.27	硫酸雾 排放浓度	mg/m ³	ND	ND	ND	/	/
设施 出口		硫酸雾基准 排放浓度	mg/m ³		ND		30	合格
Q3(4# 排气		硫酸雾 排放速率	kg/h	/	/	/	/	/

筒)		废气流量	Nm ³ /h	69949	63508	69820	/	/
		硫酸雾 排放浓度	mg/m ³	ND	ND	ND	/	/
	2021.12.28	硫酸雾基准 排放浓度	mg/m ³		ND		30	合格
		硫酸雾 排放速率	kg/h	/	/	/	/	/
	1、"ND"表	示未检出,硫酸			g/m³,对区	立的排放返	車率以"	'/"
备注		时应的工艺为酸 22m2,排放时间	洗、阳极 引为 16h,					
		表 7-13	有组织废	气监测结果	-			
监测	监测日期	监测	单位		监测结果		标准	节
点位	血侧口剂	项目	平位	第一次	第二次	第三次	限值	化
		排气筒高度	m		27		/	/
		废气流量	Nm³/h	36194	36367	35521	/	/
酸洗、 酸蚀、	2021.12.27	氮氧化物 排放浓度	mg/m ³	ND	ND	ND	/	/
除灰、 化抛、 钝化	2021.12.27	氮氧化物 基准排放浓 度	mg/m ³		/		200	· K
废气 处理		氮氧化物 排放速率	kg/h	/	/	/	/	/
设施 出口		废气流量	Nm ³ /h	35637	33754	34647	/	/
Q4(5# 排气		氮氧化物 排放浓度	mg/m ³	ND	ND	ND	/	/
筒)	2021.12.28	氮氧化物 基准排放浓 度	mg/m ³		/		200	有材
		氮氧化物 排放速率	kg/h	/	/	/	/	/
	1、"ND"表	示未检出,氮氧			mg/m³,对	应的排放	速率以	"/'
备注		対应的工艺为酸 日电镀面积为 2 2499.4m³/m²。	洗、酸蚀					•
		表 7-14	有组织废	气监测结果				_
监测		监测			 监测结果		标准	ί
点位	上上测日期 上	项目	単位	第一次	第二次	第三次	限值	包
氧化、 封闭	2022.01.19	排气筒高度	m		27		/	/
-Lat 1711	i 2022.01 19 1							

		铬酸雾 排放浓度	mg/m ³	ND	ND	ND	/		/
出口 Q5(7#		铬酸雾基准 排放浓度	mg/m ³		ND		0.0	5	合格
排气 筒)		铬酸雾 排放速率	kg/h	/	/	/	/		/
		废气流量	Nm ³ /h	19108	19100	19082	/		/
	2022 01 20	铬酸雾 排放浓度	mg/m ³	ND	ND	ND	/		/
	2022.01.20	铬酸雾基准 排放浓度	mg/m ³		ND		0.0	5	合 格_
		铬酸雾 排放速率	kg/h	/	/	/	/		/
	1、"ND"表	示未检出,铬酸		出限为 0.005 表示。	5mg/m³,对	应的排放	速率	以"	'/"
备注 		对应的工艺为氧 ¹² ,排放时间。	(化、封闭 为 4h, i	刑,根据企业 故 单 位 产 品	占实际排气				
		表 7-15 有组织废气监测结果							
监测	 监测日期	监测	単位		监测结果	I	标准	ì	评
点位 	血侧口朔	项目	平位.	第一次	第二次	第三次	限 <u>值</u>	1	价 ——
		排气筒高度	m		27		/		/
喷粉		废气流量	Nm ³ /h	8270	7918	8524	/		/
废气 处理	2021.12.27	颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	, 1	合 格 合
设施 出口		颗粒物 排放速率	kg/h	/	/	/	1	<i>i</i>	合 格
Q7(8# 排气		废气流量	Nm ³ /h	7639	7873	7892	/		/
筒)	2021.12.28	颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	<i>†</i>	合 格
		颗粒物 排放速率	kg/h	/	/	/	1		格 合 格
备注	1、"ND"表 表示。	示未检出,颗料	立物的检	出限为 1.0r	mg/m³,对[应的排放:	速率し	从"	·/"
		表 7-16	有组织原	受气监测结 男	Ę			-1	
监测	1次3511 口 40	1次 添加元 口	A C		监测结果	1		标准	评
点位	监测日期	监测项目	単位	第一次	第二次	第三次	\	限 <u>值</u>	价
涂装后		排气筒高度	m		27			/	/
续加工 废气处	2021.12.27	废气流量	Nm ³ /h	21333	21264	22091		/	/
理设施 出口		颗粒物 排放浓度	mg/m ³	ND	ND	ND		20	合格

Q8 (9# 排气		颗粒物 排放速率	kg/h	/	/	/	1	合格
筒)		非甲烷总烃 排放浓度	mg/m ³	0.47	0.34	0.49	60	格合格合格
		非甲烷总烃 排放速率	kg/h	1.00×10 ⁻²	7.23×10-	3 1.08×10°	-2 3	合格
		废气流量	Nm ³ /h	20634	20756	21083	/	/
		颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	合格
	2021.12.28	颗粒物 排放速率	kg/h	/	/	/	1	合格
		非甲烷总烃 排放浓度	mg/m ³	0.44	0.41	0.36	60	合格合格合格合格
		非甲烷总烃 排放速率	kg/h	9.08×10 ⁻³	8.51×10 ⁻²	7.59×10	-3 3	合格
备注	"ND"表示 率以"/"表示	未检出,二氧元	化硫的检	出限为 3mg	並的排放浓,	度和排放	放速	
		表 7-1	7有组织	废气监测结		1		
监测	监测日期	监测项目	 単位		监测结果		标准	评
点位			, ,	第一次	第二次	第三次	限值	价
		排气筒 高度	m	'	8		/	/
		废气流量	Nm ³ /h	1450	1494	1523	/	/
		实测颗粒 物排放浓 度	mg/m ³	ND	ND	ND	50	合格
		颗粒物 排放浓度	mg/m ³	/	/	/	/	/
		颗粒物 排放速率	kg/h	/	/	/	/	/
小锅炉 废气排	2021.12.27	实测二氧 化硫排放 浓度	mg/m ³	ND	ND	ND	50	合格
□ Q9		二氧化硫 排放浓度	mg/m ³	/	/	/	/	/
		二氧化硫 排放速率	kg/h	/	/	/	/	/
		实测氮氧 化物排放 浓度	mg/m ³	17	9	3	20	合格
		氮氧化物 排放浓度	mg/m ³	17	9	3	/	/
		氮氧化物 排放速率	kg/h	2.47×10 ⁻²	1.34×10 ⁻²	4.57×10 ⁻³	/	/
		烟气黑度	级		<1		≤1	合 格

		废气流量	Nm ³ /h	1491	1417	1474	/	/
		实测颗粒 物浓度	mg/m ³	ND	ND	ND	50	合格
		颗粒物排 放浓度	mg/m3	/	/	/	/	/
		颗粒物排 放速率	kg/h	/	/	/	/	/
		实测二氧 化硫浓度	mg/m ³	ND	ND	ND	50	合格
	2021.12.28	二氧化硫 排放浓度	mg/m ³	/	/	/	/	/
		二氧化硫 排放速率	kg/h	/	/	/	/	/
		实测氮氧 化物浓度	mg/m ³	7	10	12	20	合 格
		氮氧化物 排放浓度	mg/m ³	7	10	12	/	/
		氮氧化物 排放速率	kg/h	1.04×10 ⁻²	1.04×10 ⁻² 1.42×10 ⁻² 1.7			/
		烟气黑度	级		<1		≤1	合 格
备注 ———		宗未检出,颗料应的排放速率	区以"/"表	長示。		化硫的检出 阻	艮为	
		表 ′	7-18 有组织	织废气监测:			标	
监测	上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上	监测	 单位		监测结果		准	评
点位	血侧口粉	项目	华 亚	第一次	第二次	第三次	限 值	价
		排气筒高 度	m		8		/	/
		废气流量	Nm ³ /h	3430	3434	3506	/	/
		实测颗粒 物浓度	mg/m ³	ND	ND	ND	50	合 格
		颗粒物排 放浓度	mg/m ³	/	/	/	/	/
大锅		颗粒物排 放速率	kg/h	/	/	/	/	/
炉废 气排	2021.12.27	实测二氧 化硫浓度	mg/m ³	ND	ND	ND	50	合 格
□ Q9		二氧化硫 排放浓度	mg/m ³	/	/	/	/	/
		二氧化硫 排放速率	kg/h	/	/	/	/	/
		实测氮氧 化物浓度	mg/m ³	9	8	9	20	合 格
		氮氧化物 排放浓度	mg/m ³	10	8	10	/	/
		氮氧化物	kg/h	3.09×10 ⁻²	2.75×10 ⁻²	3.16×10 ⁻²	/	/

		排放速率						
		烟气黑度	级		<1		≤1	合格
		废气流量	Nm ³ /h	3471	3488	3536	/	/
		实测颗粒 物浓度	mg/m ³	ND	ND	ND	/	/
		颗粒物排 放浓度	mg/m3	/	/	/	50	合格
	颗粒物排 放速率	kg/h	/	/	/	/	/	
		实测二氧 化硫浓度	mg/m ³	ND	ND	ND	/	/
	2021.12.28	二氧化硫 排放浓度	mg/m ³	/	/	/	50	合格
		二氧化硫 排放速率	kg/h	/	/	/	/	/
		实测氮氧 化物浓度	mg/m ³	8	9	11	/	/
		氮氧化物 排放浓度	mg/m ³	9	10	13	20	合格
		氮氧化物 排放速率	kg/h	2.78×10 ⁻²	3.14×10 ⁻²	3.89×10 ⁻²	/	/
		烟气黑度	级		<1		≤1	合格

备注 "ND"表示未检出,颗粒物的检出限为 1.0mg/m³, 二氧化硫的检出限为 3mg/m³, 对应的排放速率以"/"表示。

表 7-19 有组织废气监测结果

监测	监测日期	监测	单位		监测结果		标准	评
点位		项目			第二次	第三次	限值	价
		排气筒高度	m		27		/	/
		废气流量	Nm³/h	7640	7783	6942	/	/
打磨废 气处理	2022.01.19	颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	合格
设施出 口 Q10		颗粒物 排放速率	kg/h	/	/	/	1	
(2#排 气筒)		废气流量	Nm ³ /h	7665	7342	7697	/	/
(2022.01.20	颗粒物 排放浓度	mg/m ³	ND	ND	ND	20	 合 格
		颗粒物 排放速率	kg/h	/	/	/	1	合格
备注	1、"ND"	表示未检出,颗	版	出限为 1.0	mg/m ³ ,对	应的排放	速率以	"/"

2、无组织废气监测结果见表 7-20~7-23, 气象参数见表 7-24。

表 7-20 无组织废气监测结果

				检测	项目	单位: m	g/m3	
采样地 点	采样 日期	采样频 次	非甲 烷总 烃	总悬浮 颗粒物	硫酸 雾	氯化 氢	铬酸 雾	氮氧化 物
厂界上		第一次	0.47	0.180	ND	ND	ND	0.029
ノ 介工 风向 Q17	2021.12.27	第二次	0.35	0.148	ND	ND	ND	0.026
//(HJ Q17		第三次	0.48	0.165	ND	ND	ND	0.024
厂界下	2021.12.27	第一次	0.59	0.262	ND	ND	ND	0.066
ノ カドド 风向 Q18		第二次	0.61	0.214	ND	ND	ND	0.059
)/([H] Q16		第三次	0.61	0.231	ND	ND	ND	0.056
厂界下	2021.12.27	第一次	0.64	0.246	ND	ND	ND	0.059
ノ が下 风向 Q19		第二次	0.64	0.230	ND	ND	ND	0.060
//(III) Q19		第三次	0.62	0.264	ND	ND	ND	0.052
一一日十		第一次	0.61	0.230	ND	ND	ND	0.049
厂界下 风向 Q20	2021.12.27	第二次	0.62	0.263	ND	ND	ND	0.041
/^(H] Q 20		第三次	0.61	0.215	ND	ND	ND	0.048
标准限值			4.0	0.5	0.3	0.05	0.002	0.12
	评价		合格	合格	合格	合格	合格	合格

备注: 1、气象参数见表 7-24;

- 2、测点示意图见图 6-1;
- 3、"ND"表示未检出,硫酸雾的检出限为 0.005mg/m³,氟化物的检出限为 0.0009mg/m³, 氯化氢的检出限为 0.02mg/m³,铬酸雾的检出限为 0.0005mg/m³。

		表	7-21 无组:	织废气监测纟	吉果			
	采样	采样		检测项	目 卓	单位: mg/	′m3	
采样地点	日期	未件 频次	非甲烷	总悬浮颗	硫酸	氯化	铬酸	氮氧化
	口切		总烃	粒物	雾	氢	雾	物
		第一 次	0.48	0.149	ND	ND	ND	0.033
厂界上风 向 Q17	2021.12.28	第二次	0.41	0.166	ND	ND	ND	0.029
		第三 次	0.40	0.183	ND	ND	ND	0.031
 厂界下风	2021.12.28	第一 次	0.73	0.248	ND	ND	ND	0.064
向 Q18		第二次	0.60	0.215	ND	0.048	ND	0.068
		第三 次	0.74	0.233	ND	ND	ND	0.062
 厂界下风		第一 次	0.68	0.214	ND	ND	ND	0.058
向 Q19	2021.12.28	第二次	0.70	0.252	ND	ND	ND	0.059
		第三 次	0.60	0.266	ND	ND	ND	0.056
厂界下风		第一 次	0.64	0.231	ND	ND	ND	0.049
向 Q20	2021.12.28	第二 次	0.66	0.248	ND	ND	ND	0.042
		第三	0.65	0.216	ND	ND	ND	0.041

		次						
杨	斥准限值		4.0	0.5	0.3	0.05	0.002	0.12
	评价		合格	合格	合格	合格	合格	 合格

备注: 1、气象参数见表 7-24;

- 2、"ND"表示未检出,硫酸雾的检出限为 0.005mg/m³,氟化物的检出限为 0.0009mg/m³,氯化氢的检出限为 0.02mg/m³,铬酸雾的检出限为 0.0005mg/m³。
- 3、测点示意图见图 6-1。

表 7-22 无组织废气监测结果 单位: mg/m³ 检测项目 采样 采样地点 采样频次 非甲烷总烃 日期 第一次 0.62 厂内车间门外 1米处布设一 2021.12.27 第二次 0.74 第三次 个点 Q21 0.56 第一次 0.61 厂内车间门外 第二次 1米处布设一 2021.12.27 0.63 个点 Q22 第三次 0.77 第一次 厂内车间门外 0.63 第二次 1米处布设一 0.61 2021.12.27 个点 Q23 第三次 0.62 厂内车间窗外 第一次 0.82 第二次 0.79 1米处布设一 2021.12.27 个点 Q24 第三次 0.72 标准限值 6.0 评价 合格

备注: 1、气象参数见表 7-24;

2、测点示意图见图 6-1。

表 7-23 无组织废气监测结果

采样地点	采样	采样频次	检测项目	单位: mg/m³	
水件地点	日期	八十岁火八	非甲	³ 烷总烃	
厂内车间门外		第一次		0.76	
1米处布设一	2021.12.28	第二次		0.67	
个点 Q21		第三次		0.67	
厂内车间门外		第一次		0.73	
1米处布设一	2021.12.28	第二次		0.58	
个点 Q22		第三次		0.73	
厂内车间门外		第一次		0.72	
1米处布设一	2021.12.28	第二次		0.62	
个点 Q23		第三次		0.60	
厂内车间窗外		第一次		0.61	
1米处布设一	2021.12.28	第二次		0.57	
个点 Q24		第三次		0.71	
	标准限值			6.0	
	评价		合格		

备注: 1、气象参数见表 7-24;

2、测点示意图见图 6-1。

表 7-24 无组织监测气象参数表										
点位	日期	检测因子	时间	大气压	气温	湿度	风向	风速		

				kPa	K	%		m/s
		总悬浮颗	第一次	103.9	275.1	29	西	2.3
	2021.12.27	粒物、硫酸	第二次	103.9	276.2	28	西	2.2
Q17~		雾、氯化	第三次	103.9	277	27	西	2.4
Q20		氢、铬酸 雾、氮氧化	第一次	103.7	276.3	30	西	2.4
	2021.12.28	物、非甲烷总烃	第二次	103.7	277.1	29	西	2.1
			第三次	103.7	278.2	28	西	2.2
		非甲烷总 烃	第一次	103.9	277.5	26	西	2.3
	2021.12.27		第二次	103.9	278.2	26	西	2.4
Q21~		<u>左</u>	第三次	103.9	279.1	25	西	2.3
Q24	2021.12.28	北田岭岩	第一次	103.7	278.3	28	西	2.5
		非甲烷总 · 烃	第二次	103.7	278.9	27	西	2.2
			第三次	103.7	279.4	27	西	2.6

3、噪声监测结果见表 7-25。

表 7-25 噪声监测结果

	DC / ED /K/ IIII/GZH/IC										
监测结果	果 dB(A)	Z 1	Z2	Z3	Z4						
2022.01.19	Leq (昼间)	56.9	57.6	57.2	56.6						
	Leq (夜间)	48.2	47.7	48.0	48.3						
2022.01.20	Leq (昼间)	57.0	57.7	56.6	56.9						
2022.01.20	Leq (夜间)	48.2	47.4	48.0	47.9						
标准限值	Leq (昼间)	65	65	65	65						
你在PR1E	Leq (夜间)	55	55	55	55						
评	合格	合格	合格	合格							

4、固体废弃物检查结果见表 7-26。

表 7-26 固废检查结果表

序	固体废物	属	废物代码	环评产生量	实际产生量	利用处置方式	暂存场
号	名称	性		(t/a)	(t/a)	刊用处重力式	所面积
1	金属边角 料		82	10	10		
_ 2	不合格品		82	3	3		75m ²
3	废磨料		82	3	3		
4	除尘废滤 芯	一般	82	0.1	0.1	收集外售苏州广 一 承再生资源股份 一 有限公司	
5	废布袋	固	82	1	1		
6	除尘器收 集的金属 粉尘	废	84	3.9	3.9		
7	含氮磷蒸 发结晶		99	107	107		
8	废切削液		HW09 900-006-09	20		委托苏州市荣望	
9	碱性废液	危险	HW17 336-064-17	32	暂未转移,	环保科技有限公	64m ² ,
10	酸性废液	废物	HW17 336-064-17	27	暂存于危废 仓库	司、苏州新区环保服务中心有限	18m ²
11	在线过滤 废滤芯	1/3	HW49 900-041-49	1		公司回收处置	

12	含镍蒸发 结晶及污 泥		HW17 336-054-17	21			
13	综合废水 处理污泥		HW17 336-064-17	400			
14	废活性炭		HW49 900-039-49	13.2			
15	漆渣		HW12 900-299-12	1			
16	洗枪废液		HW12 900-256-12	0.35			
17	含化学品 包装桶 (袋)		HW49 900-041-49	4.5			
18	含铬废液		HW17 336-069-17	6		委托苏州新区环	
19	含铬蒸发 结晶及污 泥		HW17 336-068-17	13		保服务中心有限 公司回收处置	
20	生活垃圾	一般固废	99	150	150	环卫部门清运	环卫部 门

5、污染物总量核算

根据本次验收监测结果对本项目废气、废水污染物总量进行核算,废水废气总量核算表见表 7-27, 7-28。污染物排放总量与控制指标对照表见表 7-29。

表 7-27 废水总量核算表

排放口	污染物	排放浓度(mg/L)		废水排放	年排放总量
		范围	平均值	总量(吨/年)	(吨/年)
废水接管口 S1	废水量			42131	42131
	化学需氧量	8-11	10		0.421
	悬浮物	5-9	7		0.295
	氨氮	0.266-0.440	0.349		0.0147
	总磷	0.130-0.184	0.164		0.007
	总铝	0.170-0.250	0.217		0.009
	总铜	/	/		0
	石油类	0.31-0.54	0.37		0.0156
	LAS	/	/		0
	氟化物	1.16-2.12	1.58		0.066

备注	"/"表示未检出	,总量以零计。					
备注:根	居监测期间自来水用量	和本项目全厂水平 表 7-28 废气总量标		0			
	V Note that	排放速率(kg	;/h)	年运行时间		年排放总量	
排放口	污染物	平均值		(h)		(吨/年)	
1 11 Ht F M	颗粒物	/			0		
1#排气筒	非甲烷总烃	7.26×10 ⁻³		7200)	0.052	
2#排气筒	颗粒物	/		1200)	0	
4#排气筒	硫酸雾	/		4800)	0	
5#排气筒	氟化物	/		4800	1	0	
<i>5</i> #3₽ ⟨ ¤	氮氧化物	/		4000	,	0	
7#排气筒	铬酸雾	/		1200)	0	
8#排气筒	颗粒物	/	4800		0		
9#排气筒	颗粒物	/	4800		0		
<i>></i> #14⊦ (¤	非甲烷总烃	8.87×10 ⁻³	4800		0.043		
	颗粒物	/		4800		0	
小锅炉	二氧化硫	/		4800)	0	
	氮氧化物	1.042×10 ⁻²	4800)	0.05		
	颗粒物	/		4800		0	
大锅炉	二氧化硫	/		4800		0	
	氮氧化物	3.14×10 ⁻²		4800		0.15	
<u>备注</u>		污染物浓度未检出			计。		
	表 7-29	污染物排放总量与					
类别	项目	实际排放总量 (吨/年)	总量控制指标 (吨/年)			否达到总量 控制指标	
	废水量	42131	140	917			
	化学需氧量	0.421	30.6	5382			
	悬浮物	0.295	14.0	0912	符合总量		
	氨氮	0.0147	0.6		控制指标		
	总磷	0.007	0.048				
	总铝	0.009	0.1	175			

	总铜	0	0.0176		
	石油类	0.0156	0.7406		
	LAS	0	1.1072		
	氟化物	0.066	0.072		
	颗粒物	0	0.686		
	二氧化硫	0	0.08		
	氮氧化物	0.2	0.714		
应与	VOCs(非甲烷总烃)	0.095	0.286		
废气	硫酸雾	0	0.089		
	氟化物	0	0.059		
	氯化氢	0	0.1		
	铬酸雾	0	0.0011		

表八

审批意	《见落实情况::	
—— 序 号	环评批复要求	批复落实情况
1	根据你公司委托苏州市科嘉环境服务有限公司(编制主持人:刘满意,职业资格证书管理号:07353243506320320)编制的《苏州市意可机电有限公司新建生产用房,年产机电产品及配件600万件项目(重新报批)建设项目环境影响报告表》(以下简称报告表)收悉。参考苏州市相城生态环境局业务审查意见(苏环评审查[2020]70142号),在切实落实各项污染防治措施和环境污染事故风险防范措施,确保各类污染物稳定达标排放的前提下,从环境保护角度分析,该项目建设对环境的不利影响可得到缓解和控制。我局原则同意报告表所列该建设项目的性质、规模、地	本项目第一阶段性质、地点、以及采取的环境保护措施与环评报告表内容一致。
2	点和拟采取的环境保护措施。 该项目建设地址为: 苏州市相城区黄 埭镇太东路北旺庄路东。建设内容及规模 为: 年产机电产品及配件600万件。	本项目建设地址为: 苏州市相城区黄埭镇太东路北旺庄路东。第一阶段建设内容及规模为: 年产机电产品及配件237.5万件。
3	厂区应实行"雨污分流、清污分流",含氮磷废水、含铬废水、含镍废水分别经收集单独处理后回用,不得外排:脱脂除油废水、涂装废水、综合废水分别经收集单独预处理后混合生活污水经综合废水处理设施处理后与纯水制备浓水、冷却塔排水、锅炉房排水一起通过市政污水管网接入苏州市相润排水管理有限公司(黄埭污水处理厂)处理,排放执行苏州市相润排水管理有限公司(黄埭污水处理厂)处理,排放执行苏州市相润排水管理有限公司(黄埭污水处理厂)接管	本项目厂区已完成"雨污分流、清污分流"工作,验收监测期间外排废水各类污染物浓度符合苏州市相润排水管理有限公司(黄埭污水处理厂)接管标准。验收监测期间本项目 1#、2#、8#、9#排气筒中的颗粒物、非甲烷总烃排放浓度及速率符合江苏省地方标准《大气污染物综合排放标准》(DB32/4041-2021)表 1及表 3 标准限值,5#、7#排气筒中的硫酸雾、氮氧化物、铬酸雾排放符合《电镀污

标准;

切削废气经收集处理后通过27米高1# 排气筒排放, 机加工打磨废气经收集处理 后通过27米高2#排气简排放,喷砂(抛丸) 废气经收集处理后通过27米高3#排气筒排 放, 硫酸雾经收集处理后通过27米高4#排 气筒排放,硝酸雾、氟化物、磷酸雾经收 集处理后通过27米高5#排气筒排放,盐酸 雾、碱雾经收集处理后通过27米高6#排气 简排放,铬酸雾经收集处理后通过27米高 7#排气简排放,喷粉废气经收集处理后通 过27米高8#排气简排放,电泳及烘干废气、 调漆、喷漆、烘干、喷枪清洗废气、喷粉 后烘烤废气经收集处理后通过27米高9#排 气筒排放,锅炉燃烧烟气经收集处理后通 过8米高10#排气政筒排放。项目颗粒物、 非甲烷总烃排放执行《大气污染物综合排 放标准》(GB16297-1996中表2二级标准, 硫酸雾、氮氧化物、氯化氢、氟化物、铬 酸雾排放执行《电镀污染物排放标准》 (GB21900-2008)表5、表6标准: 碱雾、磷酸 雾参照执行上海市地方标准《大气污染物 综合排放标准》(DB31/933-2015)表1标准, 锅炉烟气排放执行《锅炉大气污染物排放 标准》(GB13271-2014)表3中燃气锅炉污染 物排放标准, NOx执行《市政府办公室关 于苏州市打赢蓝天保卫战三年行动计划实 施方案的通知》(苏府办[2019]67号)中浓 度限值。加强对生产车间的管理, 废气收 集率、处理率等应达到报告表中相应要求, 采取适当措施减少废气无组织排放,厂区 内VOCs无组织排放监控点浓度应符合《挥 发性有机物无组织排放控制标准》

(GB37822-2019)特别排放限值;

染物排放标准》(GB21900-2008)表 5、表 6 以及江苏省地方标准《大气污染物综合排放标准》(DB32/4041-2021)表 3 标准限值要求。项目两台锅炉烟气排放执行《锅炉大气污染物排放标准》

(GB13271-2014)中表 3 中燃气锅炉污染物排放标准,其中 NOx 排放符合《市政府办公室关于苏州市打赢蓝天保卫战三年行动计划实施方案的通知》(苏府办[2019]67号)中浓度限值。厂区内 VOCs无组织排放监控点浓度符合《挥发性有机物无组织排放控制标准》(GB37822-2019)附录 A表 A.1 规定的特别排放限值。

验收监测期间,本项目厂界昼间、夜 间噪声经防振等降噪措施后符合《工业企 业厂界环境噪声排放标准》

(GB12348-2008)3 类标准;

本项目设置两处危废暂存场所,面积分别为64m²、18m²,各种危废均与有回收资质的单位签订回收处置协议;项目设置一处一般固废仓库,面积为75m²,一般固废已与资源利用回收单位签订协议。员工生活办公产生的生活垃圾由环卫部门定时清运。

本项目以厂界为边界设置 100 米的卫生防护距离,目前该卫生防护距离内无环境敏感目标。本项目已完成环境风险应急预案的编制,并于 2021 年 9 月 26 日完成备案。

本项目排污口已按当地环保部门要求严格设置。

本项目已按环评报告表要求制定自 行监测方案,自行开展监测工作。 厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准,必须采取防振降噪措施:

8项目以生产车间边界为起点设置100 米的卫生防护距离,卫生防护距离内不得 有居民住宅等环境敏感目标;

建设单位应全面落实报告表提出的各项环境风险防范措施,防止生产过程及污染治理设施事故引发的次生环境污染事故。在该项目实际排放污染物前,按《江苏省突发环境事件专节应急预案编制导则》完成环境风险应急预案的编制,报环保部门备案;

建设单位应对环境治理设施开展安全 风险辨识管控,要健全内部污染防治设施稳 定运行和管理责任制度,严格依据标准规 范建设环境治理设施,确保环境治理设施 安全、稳定、有效运行:该项目在设计, 施工建设和生产中总平面布局以及主要工 艺设备、储运设施、公辅工程、污染防治 设施安装、使用中涉及安全生产的应遵守 设计使用规范和相关主管部门要求;

按《江苏省排污口设置及规范化整治管理办法》的规定规范设置排放口及标识;按《江苏省污染源自动监控管理暂行办法》(苏环规[2011]1号)要求,安装自动监控设备及配套设施;

建设单位应按报告表提出的要求执行 环境监测制度,按照《排污单位自行监测 技术指南总则》(H)819-2017)和行业规范编 制自行监测方案并开展监测工作,监测结 果及相关资料备查。

项目实施后,污染物排放总量在相城 区内平衡,污染物排放总量核定为(本项 1、本项目不新增生活废水。现有各 类污染物总量以及废水排放量满足总量

4

目/全厂)

(一)废水污染物排放总量(吨/年上工业废水污染物:废水量≤116917/116917, COD≤23.4382/23.4382,

SS≤11.6912/11.6912,总铝≤0.1175/0.1175, 总铜≤0.0176/0.0176,石油类 ≤0.7406/0.7406,LAS≤1.1072/1.1072,氟化 物≤0.072/0.072;生活污水污染物:废水量 ≤24000/24000,C0D≤7.2/7.2,SS≤2.4/2.4, NH₃-N≤0.6/0.6,TP≤0.048/0.048;

(二)大气污染物排放总量(吨/年:颗粒物(有组织)≤0.686/0.686,S0₂(有组织)≤0.08/0.08,V0Cs(有组织)≤0.286/0.286,硫酸雾(有组织)≤0.089/0.089,氟化物(有组织)≤0.059/0.059,N0x(有组织)≤0.714/0.714,HC1(有组织)≤0.1/0.1,铬酸雾(有组织)≤0.0011/0.0011,颗粒物(无组织)≤0.4208/0.4208,V0Cs(无组织)≤0.222/0.222,疏酸雾(无组织)≤0.011/0.011,氟化物(无组织)≤0.007/0.007,NOx(无组织)≤0.03/0.03,HC1(无组织)≤0.013/0.013,铬酸雾(无组织)≤0.0002/0.0002。

要求。

2、本项目各类废气污染物经核算满 足总量要求。

该项目实施后,建设单位应在排放污染物之前按照国家规定的程序和要求向环保部门办理排污许可相关手续,做到持证排污、按证排污。按照《建设项目竣工环境保护验收暂行办法》办理环保设施竣工验收手续。需要配套建设的环境保护设施未建成、未经验收或者经验收不合格,建设项目已投入生产或者使用的,生态环境部门将依法进行查处。

本项目已与2020年12月23日取得排 污许可证,证书编号为:

913205067746972272001Z。目前项目第一 阶段已完成建设,正在进行"三同时"竣 工环境保护验收工作。

如该项目所涉及污染物排放标准发生 变化,应执行最新的排放标准。

本项目已执行最新的排放标准。

6

5

	该项目在建设过程中若项目的性质、	
	规模、地点、采用的生产工艺或者防治污	
	染、防止生态破坏的措施、设施发生重大	本项目第一阶段的性质、地点、采用
7	变动的,应当重新报批项目的环境影响评	的生产工艺以及防治污染、防止生态破坏
	价文件。自批准之日起,如超过5年方决定	的措施、设施未发生变动。
	工程开工建设的,环境影响评价文件须报	
	重新审核。	
		<u> </u>

表九

验收监测结论:

1、验收工况

验收监测期间(2021 年 12 月 27~28 日、2022 年 01 月 19 日~20 日、2022 年 02 月 27 日~28 日、2022 年 06 月 26 日~27 日),该项目各项环保治理设施均处于正常稳定的运行状态。生产工况均符合竣工验收要求。

2、废水验收监测结论

本项目厂区已完成"雨污分流、清污分流"工作,验收监测期间外排废水各类污染物浓度符合苏州市相润排水管理有限公司(黄埭污水处理厂)接管标准。废水污染物中废水量、化学需氧量、悬浮物、氨氮、总磷、总铝、总铜、石油类、LAS、氟化物年排放总量符合环评及批复中核定的总量控制要求。

3、 废气验收监测结论

验收监测期间本项目 1#、2#、8#、9#排气筒中的颗粒物、非甲烷总烃排放浓度及速率符合 江苏省地方标准《大气污染物综合排放标准》(DB32/4041-2021)表 1 及表 3 标准限值,5#、 7#排气筒中的硫酸雾、氮氧化物、铬酸雾排放符合《电镀污染物排放标准》(GB21900-2008) 表 5、表 6 以及江苏省地方标准《大气污染物综合排放标准》(DB32/4041-2021)表 3 标准限值 要求。项目两台锅炉烟气排放执行《锅炉大气污染物排放标准》(GB13271-2014)中表 3 中燃 气锅炉污染物排放标准,其中 NOx 排放符合《市政府办公室关于苏州市打赢蓝天保卫战三年行 动计划实施方案的通知》(苏府办[2019]67 号)中浓度限值。厂区内 VOCs 无组织排放监控点浓 度符合《挥发性有机物无组织排放控制标准》(GB37822-2019)附录 A 表 A.1 规定的特别排放 限值。

4、噪声验收监测结论

验收监测结果表明,本项目设备噪声经减振、隔声和距离衰减后昼间、夜间厂界环境噪声排放符合《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

5、固体验收结论

本项目设置两处危废暂存场所,面积分别为 64m²、18m²,各种危废均与有回收资质的单位签订回收处置协议;项目设置一处一般固废仓库,面积为 75m²,一般固废已与资源利用回收单位签订协议。本项目员工日常产生的生活垃圾由环卫部门定时清运。各类固废均得到妥善处置,达"零"外排。

附图、附件

附图 1、项目地理位置图

附图 2、项目厂区平面布置图(变动前、后)

附图 3、厂区周围概况图

附图 4、实际水平衡图

附件1、项目投资备案证

附件 2、项目环评批复

附件3、变更名称登记通知书

附件 4、企业验收补充资料

附件 5、营业执照

附件 6、土地证

附件7、排污许可证

附件8、应急预案备案表

附件 9、一般固废、垃圾清运协议、危废协议

附件10、生活污水处理协议

附件11、打磨喷砂委外订单

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章): 苏州市意可机电有限公司

填表人(签字):

项目经办人(签字):

	项目名称	苏州市意	意可机电有限公 及配件 600〕		一用房,年产机 申 重新报批)	电产品	项目代码	2017-320507-34-0 3-561936	建设地点	建设地点 苏州市相城区黄埭镇 旺庄路东				
	行业类别(分类管理 名录)		C331	1 金属结构	制造		建设性质	☑新建 □扩建	口技术改造	项目厂 区中心 经度/纬 度 N31.449915°				
	设计生产能力		年产机电产	品及配件 60	00万件项目		实际生产能力	年产机电产品及 配件237.5万件项 目	环评单位	苏州市科嘉环境服务有限公司				
建	环评文件审批机关	苏州市行政审批局				审批文号	苏行审环评 【2020】70142 号	报告表						
	开工日期						竣工日期	2020年10月20日	排污许可证申 领时间	/				
	环保设施设计单位						环保设施施工单位	/	本工程排污许 可证编号	/				
	验收单位		江苏意可舠	抗空科技股份	有限公司		环保设施监测单位	苏州科星环境检 测有限公司	验收监测时工 况	生产负荷超过 75%				
	投资总概算(万元)		42000 万		42000 万		环保投资总概算(万元)	1200万	200万 所占比例(%)		2.8	86%		
	实际总投资 (万元)			40000万			实际环保投资 (万元)	1200万	所占比例(%)		3%			
	废水治理(万元)	800	废气治理(万 元)	290	噪声治理(万 元)	50	固体废物治理(万元)	20	绿化及生态(万 元)	20	其他 (万 20 元)			
	新增废水处理设施 能力			t/d			新增废气处理设施能力	/	年平均工作时	7200				

	运营单位	20	L苏意可航空科·	技股份有限么	公司		:会统一信用(织机构代码)	代码(或组	/	验收的		月 19 日~	27 日-28 日、2022 ~20 日、2022 年 日~28 日
污	污染物	原有排 放量(1)	本期工程实际 排放浓度(2)	本期工程 允许排放 浓度(3)	本期工程 产 生 量 (4)	本期工程 自身削减 量(5)	本期工程 实际排放 量(6)	本期工程 核定排放 总量(7)	本期工程"以新带老"削减量(8)	全 厂 实 际 排 放 总量(9)	全厂核定排 放总量(10)	区域平 衡替代 削减量 (11)	排放增减量
染	废水											(11)	
物 排	废水量	/											
放	化学需氧量	/											
达标与总量	悬浮物	/											
控制		/											
工	总磷	/											
业	石油类	/											
建 设	废气												
项目	颗粒物	/											
详	二氧化硫	/											
填)	氮氧化物	/											
	非甲烷总烃	/											

工业固体废物	· /	/	/	/	/	/	/	/	/	/	/	/
与项目有 关的其他_ 特征污染												
特征污染物												

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+ (1)。3、计量单位:废水排放量——万吨/年;废气排放量——万标立方米/年;工业固体废物排放量——万吨/年;水污染物排放浓度——毫克/升。